The genetic basis of hybrid vigor or heterosis has been debated for more than a century. A popular hypothesis to explain this phenomenon is that there are different slightly deleterious recessive homozygous alleles in the two parents and that these alleles are complemented in the hybrid so that the biomass and fertility exceed both parents. To address the complementation hypothesis in a direct manner, heterosis was examined in diploid inbreds and reciprocal hybrids and compared with matched triploid inbred derivatives and two types of triploid hybrids that differ in the number of genomes from the different parents. Complementation of recessive mutations would occur equally in the two types of triploid hybrids predicting that, if this complementation were the sole basis of the heterotic response, the two types of triploid hybrids would be equivalent for hybrid vigor. However, the reciprocal diploid hybrids were similar for six of nine measured traits, but the two types of triploid hybrids differed significantly for eight of the same traits. Importantly, the triploid hybrids differed in the level of high-parent heterosis relative to the derived triploid inbreds. Also, the differences observed between the reciprocal triploid hybrids correlated strongly with differences observed between the inbreds, either at the diploid or triploid level, in a manner explicable by genome dosage rather than parent of origin effects. The findings of this study suggest that a major component of heterosis is a mechanism that is modulated by dosage-sensitive factors that involves allelic diversity across the genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574931 | PMC |
http://dx.doi.org/10.1073/pnas.1221966110 | DOI Listing |
PLoS One
January 2025
Polish Academy of Sciences, Institute of Plant Genetics, Poznan, Poland.
The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China.
from Sichuan is a valuable germplasm with high economic potential, but it faces variety scarcity. To address this, this study collected 16 varieties (lines), identifying IpHT1 as a promising parent due to its high oil content (38.5%) and red fruits.
View Article and Find Full Text PDFPlant J
December 2024
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
The citric acid accumulation during fruit ripening determines the quality of fleshy fruits. However, the molecular mechanism underlying citric acid accumulation is not clearly understood yet in citrus due to the scarcity of paired germplasm that exhibits significant difference in organic acid accumulation. Two citrus triploid hybrids with distinct citric acid content in their mature fruits were herein identified from a previously conducted interploidy cross in our group, providing an ideal paired material for studying acid accumulation in citrus.
View Article and Find Full Text PDFZootaxa
September 2024
IES Castilla. Junta de Castilla y León. 42003 Soria. Spain.
A total of 230 cleared and alizarin stained and 136 radiographed specimens of Darevskia belonging to 47 nominal taxa (species, subspecies or singular clades) including the seven parthenogenetic ones and a triploid hybrid were studied. Sixteen osteological characters in all the tried species were analyzed. These characters by corporal regions were: skull characters: 1.
View Article and Find Full Text PDFAnim Reprod Sci
January 2025
Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av, Gdynia 81-378, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!