Cell viabilities and biodegradation rates of DNA/protamine complexes with two different molecular weights of DNA.

J Biomed Mater Res B Appl Biomater

Department of Odontology, Periodontology Section, Fukuoka Dental College, Sawara-ku, Fukuoka 814-0193, Japan.

Published: July 2013

Two types of DNA/protamine complexes were prepared from protamine sulfate and 7000 base pair (bp) DNA or original DNA to investigate the effect of the molecular weight of DNA on zeta potential, cell viability, flowability, soft tissue response, and biodegradation rate. The 7000 bp DNA/protamine complex had a negative charge while the original DNA/protamine complex had a positive charge. The cell viabilities (90.4-106.8%) of these complexes were close to each other. The 7000 bp DNA/protamine complex became a softer dough than that of the original DNA/complex when both were kneaded with water. In vivo, the original DNA/protamine complex showed a milder tissue response. The original DNA/protamine complex almost disappeared 30 days after implantation. The 7000 bp DNA/complex disappeared approximately 2 weeks after implantation and areas where samples were implanted became empty. Thereafter, the empty space was gradually replaced by new soft tissues. The original DNA/protamine complex showed low intercalation and groove binding ratios of daunorubicin hydrochloride. Results indicate that high DNA condensation by cationic protamine protected the penetration of degradation enzymes into these complexes. It was found that a high molecular weight of DNA reduced the biodegradation rate and flowability. This study suggests that DNA/protamine complexes could be candidates for biomaterials that control biodegradation rates and flowability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.32877DOI Listing

Publication Analysis

Top Keywords

dna/protamine complex
24
original dna/protamine
16
dna/protamine complexes
12
dna/protamine
9
cell viabilities
8
biodegradation rates
8
molecular weight
8
weight dna
8
tissue response
8
biodegradation rate
8

Similar Publications

Background And Purpose: The optimization of an effective non-viral gene delivery method for genetic manipulation of primary human T cells has been a major challenge in immunotherapy researches. Due to the poor transfection efficiency of conventional methods in T cells, there has been an effort to increase the transfection rate in these cells. Protamine is an FDA-approved compound with a documented safety profile that enhances DNA condensation for gene delivery.

View Article and Find Full Text PDF

Effect of DNA/protamine complex paste on bone augmentation of the mandible: A pilot study on dogs.

Arch Oral Biol

July 2020

Research Center for Regenerative Medicine, Fukuoka Dental College, Tamura, Sawara-ku, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Tamura, Sawara-ku, Fukuoka, Japan. Electronic address:

Objective: Our previous studies found that a salmon DNA-based scaffold containing protamine promoted bone regeneration of the calvarial defects of rats. The aim of the present pilot study was to examine the influence of the DNA/protamine (DP) complex on bone regeneration of a saddle type, alveolar ridge defects of the dog mandible.

Design: Alveolar ridge defects were performed in the mandibles of five adult female beagles.

View Article and Find Full Text PDF

Sequentially Site-Specific Delivery of Apoptotic Protein and Tumor-Suppressor Gene for Combination Cancer Therapy.

Small

October 2019

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China.

Nanocarrier-mediated codelivery of multiple anticancer drugs is a potential strategy for enhanced efficacy of combination cancer treatment by unifying differential pharmacokinetic properties and maintaining an optimal ratio of drug cargoes. However, a programmable codelivery system is highly desired to deliver different therapeutics to their specific sites of action to pursue maximized combinational effect. Herein a liposome-based nanoassembly (p53/C-rNC/L-FA) is developed for intracellular site-specific delivery of an apoptotic protein cytochrome c (CytoC) and a plasmid DNA encoding tumor-suppressing p53 protein (p53 DNA).

View Article and Find Full Text PDF

Antithrombin DNA aptamersRE31 are single-chain oligonucleotides that fold into three-dimensional forms allowing them to bind the enzyme with high affinity and inhibit its activity in vivo. They are rapidly degraded by a nonspecific nuclease, and, to prolong the lifetime of the aptamer DNA in the bloodstream, it is necessary to coat it with a polymer envelope. A new approach to solving this problem based on preparation of DNA-polyelectrolyte complexes with a minimal particle size that can circulate with blood flow.

View Article and Find Full Text PDF

Cysteine oxidation in protamines leads to their oligomerization and contributes to sperm chromatin compaction. Here we identify the Drosophila thioredoxin Deadhead (DHD) as the factor responsible for the reduction of intermolecular disulfide bonds in protamines and their eviction from sperm during fertilization. Protamine chaperone TAP/p32 dissociates DNA-protamine complexes in vitro only when protamine oligomers are first converted to monomers by DHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!