A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of HGF expression by ΔEGFR-mediated c-Met activation in glioblastoma cells. | LitMetric

The hepatocyte growth factor receptor (c-Met) and a constitutively active mutant of the epidermal growth factor receptor (ΔEGFR/EGFRvIII) are frequently overexpressed in glioblastoma (GBM) and promote tumorigenesis. The mechanisms underlying elevated hepatocyte growth factor (HGF) production in GBM are not understood. We found higher, coordinated mRNA expression levels of HGF and c-Met in mesenchymal (Mes) GBMs, a subtype associated with poor treatment response and shorter overall survival. In an HGF/c-Met-dependent GBM cell line, HGF expression declined upon silencing of c-Met using RNAi or by inhibiting its activity with SU11274. Silencing c-Met decreased anchorage-independent colony formation and increased the survival of mice bearing intracranial GBM xenografts. Consistent with these findings, c-Met activation by ΔEGFR also elevated HGF expression, and the inhibition of ΔEGFR with AG1478 reduced HGF levels. Interestingly, c-Met expression was required for ΔEGFR-mediated HGF production, anchorage-independent growth, and in vivo tumorigenicity, suggesting that these pathways are coupled. Using an unbiased mass spectrometry-based screen, we show that signal transducer and activator of transcription 3 (STAT3) Y705 is a downstream target of c-Met signaling. Suppression of STAT3 phosphorylation with WP1193 reduced HGF expression in ΔEGFR-expressing GBM cells, whereas constitutively active STAT3 partially rescued HGF expression and colony formation in c-Met knockdown cells expressing ΔEGFR. These results suggest that the c-Met/HGF signaling axis is enhanced by ΔEGFR through increased STAT3-dependent HGF expression and that targeting c-Met in Mes GBMs may be an important strategy for therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556940PMC
http://dx.doi.org/10.1593/neo.121536DOI Listing

Publication Analysis

Top Keywords

hgf expression
24
growth factor
12
c-met
10
hgf
9
expression
8
c-met activation
8
hepatocyte growth
8
factor receptor
8
constitutively active
8
hgf production
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!