Evaluating tumor angiogenesis.

Methods Mol Biol

Department of Pharmacology, Columbia University Medical Center, New York, NY, USA.

Published: July 2013

AI Article Synopsis

  • The evaluation of tumor angiogenesis in pancreatic cancers focuses on understanding the tumor's blood vessel formation and oxygen supply.
  • The process includes analyzing properties of endothelial cells and specific genes related to blood vessel growth within the tumor.
  • This text outlines methodologies for studying tumor blood vessels in mouse models, including assessments of tumor oxygen levels, blood flow, and detailed imaging techniques.

Article Abstract

The evaluation of tumor angiogenesis in pancreatic cancers involves determining the status of tumor vasculature and hypoxia in the tumor. Describing the nature and extent of tumor angiogenesis involves evaluating the expression of endothelial and perivascular cells within the tumor, and the expression of angiogenesis-related genes in tumor vasculature. Here we describe the methodology for assessment of tumor vasculature in murine mouse models of cancer. Specifically, we provide methodology for the evaluation of tumor hypoxia, tumor vessel perfusion, and chromogenic and fluorescent immunohistochemistry applied to tumor vascular analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-287-2_20DOI Listing

Publication Analysis

Top Keywords

tumor angiogenesis
12
tumor vasculature
12
tumor
10
evaluation tumor
8
hypoxia tumor
8
evaluating tumor
4
angiogenesis evaluation
4
angiogenesis pancreatic
4
pancreatic cancers
4
cancers involves
4

Similar Publications

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

A Coordination Nanosystem Enables Endogenous Ferric Ion-Initiated Multi-Catalysis for Synergistic Tumor-Specific Ferroptosis and Gene Therapy.

Small

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.

View Article and Find Full Text PDF

The vascular endothelial growth factor (VEGF) family includes key mediators of vasculogenesis and angiogenesis. VEGFs are secreted by various cells of epithelial and mesenchymal origin and by some immune cells in response to physiological and pathological stimuli. In addition, immune cells express VEGF receptors and/or co-receptors and can respond to VEGFs in an autocrine or paracrine manner.

View Article and Find Full Text PDF

Introduction: The role of mast cells (MCs) in clear cell renal carcinoma (ccRCC) is unclear, and comprehensive single-cell studies of ccRCC MCs have not yet been performed.

Methods: To investigate the heterogeneity and effects of MCs in ccRCC, we studied single-cell transcriptomes from four ccRCC patients, integrating both single-cell sequencing and bulk tissue sequencing data from online sequencing databases, followed by validation via spatial transcriptomics and multiplex immunohistochemistry (mIHC).

Results: We identified four MC signature genes (TPSB2, TPSAB1, CPA3, and HPGDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!