Digital pathology has grown dramatically in the last 10 years and has created opportunities to not only support the triaging of difficult cases among specialists within an organization, but also enable remote pathology consultations with external organizations across the world. This study investigated one organization's need for a vendor agnostic Digital Pathology Consultation workflow solution that overcomes the challenges associated with the transfer of large studies across a local area network or across the Internet. The organization investigated is a large multifacility healthcare organization that consists of 20 hospitals spread across a wide geographical area. The organization has one of the largest academic pathology departments in the USA, with more than 100 diagnostic anatomic pathologists. This organization developed a set of web-based tools to support the workflow of digital pathology consultations and allow the viewing of whole slide images. The challenges and practical implementations of two different use cases are addressed: the occasional end user (professional or patient) requesting a second opinion and the external laboratory or hospital looking for an established consultative relationship with a large volume of cases. The solution presented in this study addresses the challenges associated with the distribution of large images and the lack of established imaging standards, while providing for a convenient and secure portal for pathologist report entry and distribution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705002 | PMC |
http://dx.doi.org/10.1007/s10278-013-9572-0 | DOI Listing |
J Vis Exp
December 2024
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University; Department of Endodontics, West China Hospital of Stomatology, Sichuan University;
Severe burn injuries are among the most traumatic and physically debilitating conditions, impacting nearly every organ system and resulting in considerable morbidity and mortality. Given their complexity and the involvement of multiple organs, various animal models have been created to replicate different facets of burn injury. Methods used to produce burned surfaces vary among experimental animal models.
View Article and Find Full Text PDFEnsuring trustworthiness is fundamental to the development of artificial intelligence (AI) that is considered societally responsible, particularly in cancer diagnostics, where a misdiagnosis can have dire consequences. Current digital pathology AI models lack systematic solutions to address trustworthiness concerns arising from model limitations and data discrepancies between model deployment and development environments. To address this issue, we developed TRUECAM, a framework designed to ensure both data and model trustworthiness in non-small cell lung cancer subtyping with whole-slide images.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
VISILAB Group, Universidad de Castilla-La Mancha, Av. Camilo José Cela, Ciudad Real, 13071, Ciudad Real, Spain.
The digitalization of traditional glass slide microscopy into whole slide images has opened up new opportunities for pathology, such as the application of artificial intelligence techniques. Specialized software is necessary to visualize and analyze these images. One of these applications is QuPath, a popular bioimage analysis tool.
View Article and Find Full Text PDFHere, we have discussed the molecular mechanisms of p53-responsive microRNAs dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL) patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate genes expression at post-transcriptional level.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK.
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!