Protective effects of mangiferin in subchronic developmental lead-exposed rats.

Biol Trace Elem Res

MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.

Published: May 2013

Lead is a ubiquitous environmental and industrial pollutant. Exposure to excessive amounts of lead is especially harmful to the central nervous systems of infants and young children, and oxidative stress has been reported as a major mechanism of lead-induced toxicity. To evaluate the ameliorative potential of antioxidant mangiferin (MGN) on lead-induced toxicity, Morris water maze test, determination of blood and bone lead concentration, determination of antioxidant status in plasma, as well as observation of ultrastructural changes in the hippocampus were carried out. In the present study, under a transmission electron microscope, ameliorated morphological damages in the hippocampus were observed in MGN-treated groups. Blood and bone lead concentration in MGN-treated groups lowered to some extent (p < 0.05, p < 0.01). The activities of antioxidant enzymes, glutathione (GSH) content, and the GSH/oxidized glutathione ratio in MGN-treated groups were increased, respectively. Further studies are needed to establish whether the observed differences were a direct cause of mangiferin on lead-induced toxicity or not. This study might provide clues for the treatment of lead-induced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-013-9610-2DOI Listing

Publication Analysis

Top Keywords

lead-induced toxicity
8
blood bone
8
bone lead
8
lead concentration
8
mgn-treated groups
8
protective effects
4
effects mangiferin
4
mangiferin subchronic
4
subchronic developmental
4
developmental lead-exposed
4

Similar Publications

Ameliorative role of bioactive compounds against lead-induced neurotoxicity.

Neuroscience

January 2025

Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:

Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth.

View Article and Find Full Text PDF

Zinc Deficiency Exacerbates Lead-Induced Interleukin-2 Suppression by Regulating CREM Expression.

Int J Mol Sci

December 2024

Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.

Lead, a prevalent heavy metal, impairs the immune system by affecting T cell function. Similarly, zinc deficiency adversely affects T cells, with zinc deficiency and lead exposure being linked to reduced interleukin-2 (IL-2) production. Zinc deficiency has been associated with increased expression of the transcription factor CREM 100 kDa, which downregulates IL-2.

View Article and Find Full Text PDF

Oxidized yeast glucan alleviates lead-induced toxicity in mice by improving intestinal health to inhibit Pb absorption and reducing kidney oxidative stress.

Int J Biol Macromol

December 2024

College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

This study investigated the protective effects and Pb-excretion mechanisms of yeast glucans (YG) with varying oxidation degrees in Pb-exposed mice. Results demonstrated that all three glucans effectively reduced blood lead levels, alleviated inflammation, and mitigated liver damage in Pb-exposed mice, with highly oxidized yeast glucan (OYG2) exhibiting the greatest efficacy. Furthermore, the glucans attenuated Pb-induced oxidative stress and pathological changes in the kidney by elevating glutathione and superoxide dismutase levels, thereby restoring renal excretory function (blood urea nitrogen and creatinine).

View Article and Find Full Text PDF

Lead, a heavy metal, has emerged as one of the most significant pollutants, bearing irreversible consequences on human and animal health in conjunction with industrial development. Presently, the use of medicinal plants to alleviate the adverse effects of heavy metal toxicity has captured the attention of researchers. Hence, the objective of this study was to assess the impact of levamisole and broccoli extract on the electrophoretic pattern of serum proteins, hematological parameters, and histopathological alterations in the liver, kidney, and spleen tissues within a lead poisoning model of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!