Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model.

IEEE Trans Biomed Eng

Department of Applied Mathematics and Computer Science, University of Life Sciences, Lublin 20-950, Poland.

Published: July 2013

Magnetic fluid hyperthermia (MFH) is a minimally invasive procedure that destroys cancer cells. It is based on a superparamagnetic heat phenomenon and consists in feeding a ferrofluid into a tumor, and then applying an external electromagnetic field, which leads to apoptosis. The strength of the magnetic field, optimal dose of the ferrofluid, the volume of the tumor and the safety standards have to be taken into consideration when MFH treatment is planned. In this study, we have presented the novel complementary investigation based both on the experiments and numerical methodology connected with female breast cancer. We have conducted experiments on simplified female breast phantoms with numerical analysis and then we transferred the results on an anatomically-like breast model.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2013.2242071DOI Listing

Publication Analysis

Top Keywords

magnetic fluid
8
fluid hyperthermia
8
breast model
8
female breast
8
hyperthermia modeling
4
modeling based
4
based phantom
4
phantom measurements
4
measurements realistic
4
breast
4

Similar Publications

Radiography is a field of medicine inherently intertwined with technology. The dependency on technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable in US and MRI, advancements in technology have made it possible in CT, with ongoing studies aimed at further optimization.

View Article and Find Full Text PDF

Radiomic signatures of brain metastases on MRI: utility in predicting pathological subtypes of lung cancer.

Transl Cancer Res

December 2024

Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: The pathological sub-classification of lung cancer is crucial in diagnosis, treatment and prognosis for patients. Quick and timely identification of pathological subtypes from imaging examinations rather than histological tests could help guiding therapeutic strategies. The aim of the study is to construct a non-invasive radiomics-based model for predicting the subtypes of lung cancer on brain metastases (BMs) from multiple magnetic resonance imaging (MRI) sequences.

View Article and Find Full Text PDF

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Magnetic Bistable Dome Actuators for Soft Robotics with High Volume Capacity and Motion Stability.

ACS Appl Mater Interfaces

January 2025

Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P.R. China.

Magneto-responsive soft actuators hold significant promise in soft robotics due to their rapid responsiveness and untethered operation. However, controlling their deformations presents challenges because of their inherent flexibility and high degrees of freedom. Here, we present a magnetically driven bistable dome-shaped soft actuator that simplifies deformation by limiting it to two distinct states.

View Article and Find Full Text PDF

High-Field-Blinded Assessment of Portable Ultra-Low-Field Brain MRI for Multiple Sclerosis.

J Neuroimaging

January 2025

Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.

Background And Purpose: MRI is crucial for multiple sclerosis (MS), but the relative value of portable ultra-low field MRI (pULF-MRI), a technology that holds promise for extending access to MRI, is unknown. We assessed white matter lesion (WML) detection on pULF-MRI compared to high-field MRI (HF-MRI), focusing on blinded assessments, assessor self-training, and multiplanar acquisitions.

Methods: Fifty-five adults with MS underwent pULF-MRI following their HF-MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!