This study investigated the hypothesis that the coupled contribution of all body segments to the whole-body response during both walking and managing unexpected perturbations is characterized by similar features which do not depend on the laterality (i.e., right versus left sides), but can be influenced by the direction (e.g., north, east, south, etc.) of the perturbation. The whole-body angular momentum was estimated as summation of segmental angular momenta, while 15 young adults managed ten unexpected unilateral perturbations during walking. Then, the Principal component analysis was used to extract primitive features describing intersegment coordination. Results showed that intersegment coupling was similar even though the reactive response to the perturbations elicited more consistent motor schemes across body segments than during walking, especially in the frontal plane. The direction of the perturbation significantly affected angular momentum regulation documenting the attitude of the central nervous system to interpret multiple sensory inputs in order to produce context-dependent reactive responses. With respect to the side, results highlighted anisotropic features of the elicited motor schemes that seemed to depend on subjects' dominance. Finally, results confirm that the coordination of upper and lower body segments is synergistically achieved strengthening the hypothesis that it may result from common neural pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2013.2241434DOI Listing

Publication Analysis

Top Keywords

angular momentum
12
body segments
12
motor schemes
8
angular
4
momentum unexpected
4
unexpected multidirectional
4
perturbations
4
multidirectional perturbations
4
perturbations delivered
4
walking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!