A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In silico peptide-binding predictions of passerine MHC class I reveal similarities across distantly related species, suggesting convergence on the level of protein function. | LitMetric

The major histocompatibility complex (MHC) genes are the most polymorphic genes found in the vertebrate genome, and they encode proteins that play an essential role in the adaptive immune response. Many songbirds (passerines) have been shown to have a large number of transcribed MHC class I genes compared to most mammals. To elucidate the reason for this large number of genes, we compared 14 MHC class I alleles (α1-α3 domains), from great reed warbler, house sparrow and tree sparrow, via phylogenetic analysis, homology modelling and in silico peptide-binding predictions to investigate their functional and genetic relationships. We found more pronounced clustering of the MHC class I allomorphs (allele specific proteins) in regards to their function (peptide-binding specificities) compared to their genetic relationships (amino acid sequences), indicating that the high number of alleles is of functional significance. The MHC class I allomorphs from house sparrow and tree sparrow, species that diverged 10 million years ago (MYA), had overlapping peptide-binding specificities, and these similarities across species were also confirmed in phylogenetic analyses based on amino acid sequences. Notably, there were also overlapping peptide-binding specificities in the allomorphs from house sparrow and great reed warbler, although these species diverged 30 MYA. This overlap was not found in a tree based on amino acid sequences. Our interpretation is that convergent evolution on the level of the protein function, possibly driven by selection from shared pathogens, has resulted in allomorphs with similar peptide-binding repertoires, although trans-species evolution in combination with gene conversion cannot be ruled out.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00251-012-0676-3DOI Listing

Publication Analysis

Top Keywords

mhc class
20
house sparrow
12
peptide-binding specificities
12
amino acid
12
acid sequences
12
silico peptide-binding
8
peptide-binding predictions
8
level protein
8
protein function
8
large number
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!