Neuroendocrine prostate cancer (NEPC), also referred to as anaplastic prostate cancer, is a lethal tumor that most commonly arises in late stages of prostate adenocarcinoma (PCA) with predilection to metastasize to visceral organs. In the current study, we explore for evidence that Aurora kinase A (AURKA) and N-myc (MYCN) gene abnormalities are harbingers of treatment-related NEPC (t-NEPC). We studied primary prostate tissue from 15 hormone naïve PCAs, 51 castration-resistant prostate cancers, and 15 metastatic tumors from 72 patients at different stages of disease progression to t-NEPC, some with multiple specimens. Histologic evaluation, immunohistochemistry, and fluorescence in situ hybridization were performed and correlated with clinical variables. AURKA amplification was identified in overall 65% of PCAs (hormone naïve and treated) from patients that developed t-NEPC and in 86% of metastases. Concurrent amplification of MYCN was present in 70% of primary PCAs, 69% of treated PCAs, and 83% of metastases. In contrast, in an unselected PCA cohort, AURKA and MYCN amplifications were identified in only 5% of 169 cases. When metastatic t-NEPC was compared to primary PCA from the same patients, there was 100% concordance of ERG rearrangement, 100% concordance of AURKA amplification, and 60% concordance of MYCN amplification. In tumors with mixed features, there was also 100% concordance of ERG rearrangement and 94% concordance of AURKA and MYCN co-amplification between areas of NEPC and adenocarcinoma. AURKA and MYCN amplifications may be prognostic and predictive biomarkers, as they are harbingers of tumors at risk of progressing to t-NEPC after hormonal therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556934 | PMC |
http://dx.doi.org/10.1593/neo.121550 | DOI Listing |
Cell Chem Biol
January 2025
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Pathology, Anhui Provincial Children's Hospital, Hefei, Anhui, China.
Background: Neuroblastoma (NB) is the most common extracranial solid tumor in children, and the AURKA gene encodes a protein kinase involved in cell cycle regulation that plays an oncogenic role in a variety of human cancers. The aim of this study was to validate the biological function and prognostic significance of AURKA in NB using basic experiments and bioinformatics.
Methods: Data obtained from Target and GEO databases were analyzed using various bioinformatic techniques.
Cell Death Dis
July 2024
The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, P.R. China.
Am J Pathol
September 2024
The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, India. Electronic address:
Retinoblastoma (RB) is an intraocular malignancy initiated by loss of RB1 function and/or dysregulation of MYCN oncogene. RB is primarily treated with chemotherapy; however, systemic toxicity and long-term adverse effects remain a significant challenge necessitating the identification of specific molecular targets. Aurora kinase A (AURKA), a critical cell cycle regulator, contributes to cancer pathogenesis, especially in RB1-deficient and MYCN-dysregulated tumors.
View Article and Find Full Text PDFEJNMMI Res
June 2024
Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
Background: Neuroblastoma is the most common extra-cranial pediatric solid tumor. I-metaiodobenzylguanidine (MIBG) is a targeted radiopharmaceutical highly specific for neuroblastoma tumors, providing potent radiotherapy to widely metastatic disease. Aurora kinase A (AURKA) plays a role in mitosis and stabilization of the MYCN protein in neuroblastoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!