Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A framework for describing anion displacements from perfect octahedra in perovskites has been developed for use with neutron diffraction data sets. We describe the distortions as noncoplanar arrangements, or buckling, of oxygen ions in any central plane of the octahedron, ignoring the central cation. Nonplanar distortions of octahedra have been calculated for perovskite structures contained within the Inorganic Crystal Structure Database. We find that antiferroelectric materials have buckling angles larger than ~2° and ferroelectric materials have buckling angles between 0° and 1°. The trend is found as a function of solid solution composition and temperature for common antiferroelectrics. For example, the described method resolves a structural difference between the end members PbTiO(3) and PbZrO(3), which exhibit ferroelectric and antiferroelectric responses, respectively. This technique is applicable to other structures containing anion octahedra, e.g., pyrochlores, spinels, and tungsten bronzes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2013.2562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!