A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pharmacokinetic model incorporating mechanism-based inactivation of CYP2D6 can explain both non-linear kinetics and drug interactions of paroxetine. | LitMetric

Objective: To develop a pharmacokinetic model able to describe the nonlinear pharmacokinetics of paroxetine (PRX) and to predict the drug-drug interaction between PRX and metoprolol under various dosage regimens.

Methods: A pharmacokinetic model of PRX incorporating mechanism-based inhibition was developed. This model was fitted to the drug concentration profiles obtained after single and repeated administrations of PRX to estimate the pharmacokinetic parameters of PRX and degradation rate constant of cytochrome P450 (CYP) 2D6. It was also fitted to the time profile of S-metoprolol after coadministration of metoprolol and PRX, and the fractional contribution of CYP2D6 to overall clearance of S-metoprolol was estimated. Using the developed model and estimated parameters, an optimal dosage regimen for metoprolol during withdrawal of PRX was simulated.

Results: The developed model well described the time profiles of both PRX and metoprolol concentration during concomitant administration. The estimated parameters were consistent with reported values. The nonlinear and accumulation properties of PRX could be explained by mechanism-based inhibition of CYP2D6 by PRX. Upon tapering PRX from 20 mg/ day to 10 mg/day for 14 days then 5 mg/day for 14 days until cessation, the optimal dosage regimen to resume 120 mg/day of metoprolol based on the developed model was as follows: 30 mg/day during concomitant administration, 40 mg/day for the next 14 days, 60 mg/day for the next 14 days, and finally 120 mg/day.

Conclusions: The developed model enabled us to quantitatively estimate drug-drug interactions of PRX and CYP2D6 substrate drugs, and to predict optimal dosage regimens.

Download full-text PDF

Source
http://dx.doi.org/10.5414/CP201798DOI Listing

Publication Analysis

Top Keywords

developed model
20
mg/day days
16
pharmacokinetic model
12
prx
12
optimal dosage
12
incorporating mechanism-based
8
prx metoprolol
8
mechanism-based inhibition
8
estimated parameters
8
dosage regimen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!