Single-molecule approaches to prion protein misfolding.

Prion

Department of Physics, University of Alberta, Edmonton, AB Canada.

Published: December 2013

The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609121PMC
http://dx.doi.org/10.4161/pri.23303DOI Listing

Publication Analysis

Top Keywords

single-molecule approaches
8
prion protein
8
structural conversion
8
prion
6
misfolding
5
single-molecule
4
approaches prion
4
protein misfolding
4
misfolding structural
4
conversion
4

Similar Publications

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against : Design, Synthesis, and In Vitro and In Silico Insights.

Molecules

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.

View Article and Find Full Text PDF

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

Flux through membrane channel: linear transport single-molecule approaches.

Phys Chem Chem Phys

January 2025

Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

One of the most subtle steps in the single-molecule approach to the flux through the membrane channel, which uses the one-dimensional Smoluchowski equation, is to describe the molecule's "behavior" at the contacts between the channel openings and the bulk. Earlier, to handle this issue, we introduced the so-called "radiation boundary conditions" that account for the interplay between the two types of trajectories of the molecules starting at the openings, specifically, the ones that eventually return to the channel and the ones that escape to infinity. The latter trajectories represent the true translocation events on the condition that initially the molecule entered the channel from the opposite side.

View Article and Find Full Text PDF

Profiling the epigenome using long-read sequencing.

Nat Genet

January 2025

Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain.

The advent of single-molecule, long-read sequencing (LRS) technologies by Oxford Nanopore Technologies and Pacific Biosciences has revolutionized genomics, transcriptomics and, more recently, epigenomics research. These technologies offer distinct advantages, including the direct detection of methylated DNA and simultaneous assessment of DNA sequences spanning multiple kilobases along with their modifications at the single-molecule level. This has enabled the development of new assays for analyzing chromatin states and made it possible to integrate data for DNA methylation, chromatin accessibility, transcription factor binding and histone modifications, thereby facilitating comprehensive epigenomic profiling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!