The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2013.01.021DOI Listing

Publication Analysis

Top Keywords

combined hydrolysis
16
hydrochloric acid
12
waxy rice
12
rice starch
12
hydrolysis
10
acid hydrolysis
8
native waxy
8
hydrolysis α-amylase
8
α-amylase hydrochloric
8
digestible starch
8

Similar Publications

Polyketide synthases (PKSs) are multidomain enzymatic assembly lines that biosynthesize a wide selection of bioactive natural products from simple building blocks. In contrast to their -acyltransferase (AT) counterparts, -AT PKSs rely on stand-alone ATs to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. -AT PKS gene clusters also encode stand-alone acyl hydrolases (AHs), which are predicted to share the overall fold of ATs but function like type II thioesterases (TEs), hydrolyzing aberrant acyl chains from ACP domains to promote biosynthetic efficiency.

View Article and Find Full Text PDF

Bispecific antibodies (BsAb) have emerged as a leading treatment modality in patients suffering from B-cell non-Hodgkin's lymphoma (B-NHL). However, treatment failure is common and may potentially be attributed to pre-existing or emerging T-cell exhaustion. CD39 catalyzes-together with CD73-the hydrolysis of immunogenic ATP into immunosuppressive adenosine and thus actively promotes an immunosuppressive micromilieu.

View Article and Find Full Text PDF

Differentiation of Citri Reticulatae Pericarpium varieties via HPLC fingerprinting of polysaccharides combined with machine learning.

Food Chem

January 2025

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China. Electronic address:

To accurately and reliably distinguish different varieties of Citri Reticulatae Pericarpium (CRP), we propose a novel classification strategy combining polysaccharide fingerprinting and machine learning (ML). First, extraction conditions are optimized using the one-variable-at-a-time method and response surface methodology, and the extraction yield of total polysaccharides reaches 25.15%, with different varieties exhibiting different anti-oxidant abilities.

View Article and Find Full Text PDF

The need for stringent phosphorus removal from domestic wastewater is increasing to mitigate eutrophication, while efficient phosphate reuse is critical due to the global phosphate crisis. Combining aluminum sulfate (ALS) with high molecular weight organic polymers achieved 95-99% removal of particles, turbidity, and phosphates, reducing ALS usage by 40%. We propose mechanisms to explain the enhanced treatment efficiency.

View Article and Find Full Text PDF

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!