Gait measures are used to evaluate change in patients with knee osteoarthritis (OA), but reliability has not been fully established in this population. This study examined test-retest reliability of knee angle and moment gait waveform characteristics captured using discrete parameters and principal component analysis (PCA) in individuals with moderate knee OA. Participants (n=20) underwent three-dimensional gait analysis on two occasions. Motion and force data were captured using two camera banks, infrared light emitting diodes and force plate during self-selected walking. Knee angle and moment waveforms were calculated and analyzed using discrete parameters and by identifying waveform characteristics using PCA. Intraclass correlation coefficients (ICC2,k) examined test-retest reliability of discrete parameters and PCA derived scores (PC-scores). ICC2,k values ranged from 0.57 to 0.93 for discrete parameters, 0.52-0.86 for knee angle PC-scores and 0.30-0.94 for the knee moment PC-scores. However, 10 of 13 discrete parameters, six of nine knee angle PC-scores and seven of nine knee moment PC-scores had ICC2,k values greater than or equal to 0.70. Discrete parameters and PC-scores from flexion angles and adduction moments had the highest ICC2,k values while adduction angles, rotation angles, and rotation moments had the lowest. Most knee angle and moment waveform characteristics demonstrated ICC2,k values that could be interpreted as acceptable. Caution should be used when examining adduction and rotation angle magnitudes and early/mid-stance rotation moment magnitudes due to lower ICC2,k values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2013.01.001 | DOI Listing |
Sci Rep
January 2025
School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
The application of high-pressure grinding rolls (HPGR) for ore crushing is considered to be one of the effective ways to save energy and reduce emissions in the ore processing industry. The crushing effect is directly determined by the forces of ore material during roll crushing. However, the mechanical state of ore material in roll crushing and the effect of roll structure, process parameters, feed particle size, on the force during the crushing of ore material needs to be expanded.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.
Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.
Chaos
January 2025
Division of Control and Dynamical Systems, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ta. Sección, 78216 San Luis Potosí, SLP, México.
In this paper, we give a class of one-dimensional discrete dynamical systems with state space N+. This class of systems is defined by two parameters: one of them sets the number of nearest neighbors that determine the rule of evolution, and the other parameter determines a segment of natural numbers Λ={1,2,…,b}. In particular, we investigate the behavior of a class of one-dimensional maps where an integer moves to an other integer given by the sum of the nearest neighbors minus a multiple of b∈N+.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!