A vast array of noninvasive imaging modalities is available for the evaluation of the presence and severity of coronary artery disease (CAD). Choosing the right test can be challenging but is critical for proper patient diagnosis and management. Presently available imaging tests for CAD include: (1) nuclear myocardial perfusion imaging procedures (single-photon emission tomography) and positron emission tomography, (2) stress echocardiography, (3) computed tomography coronary angiography, and (4) cardiac magnetic resonance imaging. Exercise treadmill testing electrocardiography is another alternative that we will discuss briefly. Selection of the most appropriate imaging modality requires knowledge of the clinical question being addressed, patient characteristics (pretest probability and prevalence of disease), the strengths, limitations, risks, costs, and availability of each procedure. To assist with test selection, we review the relevant literature in detail to consider the relative merits of cardiac imaging modalities for: (1) detection of CAD, (2) risk stratification and prognostication, and (3) guiding clinical decision making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cjca.2012.10.022 | DOI Listing |
Sci Adv
January 2025
Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan.
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence RI.
Cardiac amyloidosis (CA) is an infiltrative disease that results from the deposition of amyloid fibrils in the myocardium, resulting in restrictive cardiomyopathy. The amyloid fibrils are predominantly derived from two parent proteins, immunoglobulin light chain (AL) and transthyretin (ATTR), and ATTR is further classified into hereditary (ATTRv) and wild-type (ATTRwt) based on the presence or absence, respectively, of a mutation in the transthyretin gene. Once thought to be a rare entity, CA is increasingly recognized as a significant cause of heart failure due to improved clinical awareness and better diagnostic imaging.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Brown University Health Cardiovascular Institute; Rhode Island, the Miriam and Newport Hospitals; Warren Alpert Medical School, Brown University.
Cardiac magnetic resonance imaging (CMR) is an exciting noninvasive imaging modality with increasing utilization in the field of cardiovascular medicine. In conjunction with echocardiogram, computed tomography, and invasive therapies, CMR has provided exceptional capability to further evaluate complex clinical cardiac conditions. CMR provides both anatomical and physiological information of a variety of tissue types, without the need for ionizing radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!