Maturation is a developmental trait that plays a key role in shaping organisms' life-history. However, progress in understanding how maturation phenotypes evolve has been held back by confusion over how best to model maturation decisions and a lack of studies comparing genotypic variation in maturation. Here, we fitted probabilistic maturation reaction norms (PMRNs) to data collected from five clones of Daphnia magna and five of Daphnia pulex collected from within and between different populations. We directly compared the utility of modeling approaches that assume maturation to be a process with an instantaneous rate with those that do not by fitting maturation rate and logistic regression models, and emphasize similarities and differences between them. Our results demonstrate that in Daphnia, PMRNs using a logistic regression approach were simpler to use and provided a better fit to the data. The decision to mature was plastic across a range of growth trajectories and dependent upon both body size and age. However, the age effect was stronger in D. magna than D. pulex and varied considerably between clones. Our results support the idea that maturation thresholds can evolve but also suggest that the notion of a threshold based on a single fixed state is an oversimplification that underestimates the adaptability of these important traits.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1558-5646.2012.01758.xDOI Listing

Publication Analysis

Top Keywords

genotypic variation
8
decision mature
8
maturation
8
logistic regression
8
measure maturation
4
maturation comparison
4
comparison probabilistic
4
probabilistic methods
4
methods test
4
test genotypic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!