Introduction: Mesenchymal stem cells (MSCs) are immunosuppressive, but we lack an understanding of how these adult stem cells are in turn affected by immune cells and the surrounding tissue environment. As MSCs have stromal functions and exhibit great plasticity, the influence of an inflamed microenvironment on their responses is important to determine. MSCs downregulate microglial inflammatory responses, and here we describe the mutual effects of coculturing mouse bone marrow MSCs with BV2 microglia in a lipopolysaccharide (LPS) inflammatory paradigm.

Methods: Mouse MSCs were cultured from femoral and tibial bone marrow aspirates and characterized. MSCs were cocultured with BV2 microglia at four seeding-density ratios (1:0.2, 1:0.1, 1:0.02, and 1:0.01 (BV2/MSC)), and stimulated with 1 μg/ml LPS. In certain assays, MSCs were separated from BV2 cells with a cell-culture insert to determine the influence of soluble factors on downstream responses. Inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) were measured in cocultures, and MSC and BV2 chemotactic ability determined by migration assays.

Results: We demonstrated MSCs to increase expression of NO and IL-6 and decrease TNF-α in LPS-treated cocultures. These effects are differentially mediated by soluble factors and cell-to-cell contact. In response to an LPS stimulus, MSCs display distinct behaviors, including expressing IL-6 and very high levels of the chemokine CCL2. Microglia increase their migration almost fourfold in the presence of LPS, and interestingly, MSCs provide an equal impetus for microglia locomotion. MSCs do not migrate toward LPS but migrate toward microglia, with their chemotaxis increasing when microglia are activated. Similarly, MSCs do not produce NO when exposed to LPS, but secrete large amounts when exposed to soluble factors from activated microglia. This demonstrates that certain phenotypic changes of MSCs are governed by inflammatory microglia, and not by the inflammatory stimulus. Nonetheless, LPS appears to "prime" the NO-secretory effects of MSCs, as prior treatment with LPS triggers a bigger NO response from MSCs after exposure to microglial soluble factors.

Conclusions: These effects demonstrate the multifaceted and reciprocal interactions of MSCs and microglia within an inflammatory milieu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706938PMC
http://dx.doi.org/10.1186/scrt160DOI Listing

Publication Analysis

Top Keywords

mscs
16
stem cells
12
bv2 microglia
12
soluble factors
12
microglia
10
reciprocal interactions
8
mouse bone
8
mesenchymal stem
8
microglia lipopolysaccharide
8
bone marrow
8

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

Fetal bovine serum (FBS) has long been the standard supplement in cell culture media, providing essential growth factors and proteins that support cell growth and differentiation. However, ethical concerns and rising costs associated with FBS have driven researchers to explore alternatives, particularly human platelet lysate (HPL). Among these alternatives, fibrinogen-depleted HPL (FD-HPL) has gained attention due to its reduced thrombogenicity, which minimizes the risk of clot formation in cell cultures and enhances the safety of therapeutic applications.

View Article and Find Full Text PDF

Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD).

Int J Mol Sci

January 2025

Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.

The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!