CoA biosynthesis in archaea.

Biochem Soc Trans

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Published: February 2013

CoA is a ubiquitous molecule in all three domains of life and is involved in various metabolic pathways. The enzymes and reactions involved in CoA biosynthesis in eukaryotes and bacteria have been identified. By contrast, the proteins/genes involved in CoA biosynthesis in archaea have not been fully clarified, and much has to be learned before we obtain a general understanding of how this molecule is synthesized. In the present paper, we review the current status of the research on CoA biosynthesis in the archaea, and discuss important questions that should be addressed in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20120311DOI Listing

Publication Analysis

Top Keywords

coa biosynthesis
16
biosynthesis archaea
12
involved coa
8
coa
5
archaea coa
4
coa ubiquitous
4
ubiquitous molecule
4
molecule three
4
three domains
4
domains life
4

Similar Publications

The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer.

FASEB J

January 2025

Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression.

View Article and Find Full Text PDF

Cotton GhMAX2 promotes single-celled fiber elongation by releasing the GhS1FA-mediated inhibition of fatty acid biosynthesis.

Plant Cell Rep

January 2025

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.

View Article and Find Full Text PDF

Perturbations in intermediary metabolism contribute to the pathogenesis of acute myeloid leukemia (AML) and can produce therapeutically actionable dependencies. Here, we probed whether alpha-ketoglutarate (aKG) metabolism represents a specific vulnerability in AML. Using functional genomics, metabolomics, and mouse models, we identified the aKG dehydrogenase complex, which catalyzes the conversion of aKG to succinyl CoA, as a molecular dependency across multiple models of adverse-risk AML.

View Article and Find Full Text PDF

Olanzapine exposure disordered lipid metabolism, gut microbiota and behavior in zebrafish (Danio rerio).

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:

Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!