Objectives: To assess whether residential proximity to industrial incinerators in England is associated with increased risk of cancer incidence and mortality.
Design: Retrospective study using matched case-control areas.
Setting: Five circular regions of radius 10 km near industrial incinerators in England (case regions) and five matched control regions, 1998-2008.
Participants: All cases of diseases of interest within the circular areas.
Primary And Secondary Outcome Measures: Counts of childhood cancer incidence (<15 years); childhood leukaemia incidence (<15 years); leukaemia incidence; liver cancer incidence; lung cancer incidence; non-Hodgkin's lymphoma incidence; all-cause mortality; infant mortality (<1 year) and liver cancer mortality.
Results: The estimated relative risks for case circles versus control circles for the nine outcomes considered range from 0.94 to 1.14, and show neither elevated risk in case circles compared to control areas nor elevated risk with proximity to incinerators within case circles.
Conclusions: This study applies statistical methods for analysing spatially referenced health outcome data in regions with a hypothesised exposure relative to matched regions with no such exposure. There is no evidence of elevated risk of cancer incidence or mortality in the vicinity of large industrial incinerators in England.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563137 | PMC |
http://dx.doi.org/10.1136/bmjopen-2012-001847 | DOI Listing |
J Environ Manage
December 2024
College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
The disposal of municipal solid waste (MSW) is a significant source of greenhouse gas (GHG) emissions. As incineration becomes the primary method of MSW disposal in China, MSW incineration (MSWI) plants are expected to play a crucial role in mitigating GHG emissions in the waste sector. This study estimated the quarterly GHG emissions from two representative MSWI plants in Qingdao using a life-cycle assessment (LCA) approach.
View Article and Find Full Text PDFDespite the many benefits of greenhouses, it is challenging to meet their heating demand, as greenhouses belong to the most energy-intensive production systems in the agriculture sector. Industrial symbiosis can bring an effective solution by utilizing waste heat from other industries to meet the greenhouse heat demand. This study proposes an optimization framework by which optimum symbiotic relationships can be identified.
View Article and Find Full Text PDFSci China Life Sci
December 2024
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2024
Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey.
This study evaluated an innovative strategy for valorizing grape stems (GS) from the winery industry as an animal feed ingredient from both environmental life-cycle and economic perspectives. Two processes for GS-based feed ingredient production were compared: one using hydrolyzed GS and the other using nonhydrolyzed GS, alongside the conventional animal feed production process. Using primary pilot-scale data for GS-based feed ingredient production and secondary data for animal feed production, life-cycle assessments, and economic analyses were conducted.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Civil Engineering, Dalian University of Technology, Liaoning Province, Dalian, 116024, China. Electronic address:
Alkaline-activation technology was an effective means of disposing of low-activity and heavy-metal-containing industrial solid wastes. In this paper, alkali-activated converter steel slag and municipal solid waste incineration fly ash (MSWIFA) were prepared by modulating alkali-activation conditions. The effect of alkali-activation conditions on microstructure of C-(A)-S-H and leaching of lead and zinc, pore solution pH, and the correlation among them were revealed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!