3D interconnected porous scaffolds of HA and HA with various additions of SiO2 were fabricated using a polymeric template technique, to make bioceramic scaffolds consisting of macrostructures of the interconnected macropores. Three different sizes of the polyurethane template were used in the fabrication process to form different size interconnected macropores, to study the effect of pore size on human osteoblast cell viability. The template used allowed fabrication of scaffolds with pore sizes of 45, 60, and 75 ppi, respectively. Scanning microscopy was used extensively to observe the microstructure of the sintered samples and the characteristics of cells growing on the HA surfaces of the interconnected macropores. It has been clearly demonstrated that the SiO2 addition has influenced both the phase transformation of HA to TCP (β-TCP and α-TCP) and also affected the human osteoblast cell viability grown on these scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.34523 | DOI Listing |
J Food Drug Anal
December 2024
School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.
View Article and Find Full Text PDFCurr Protoc
January 2025
Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey.
Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Dentistry, Institute of Science Tokyo, Tokyo, Japan.
Bone remodeling maintains the robustness of the bone tissue by balancing bone resorption by osteoclasts and bone formation by osteoblasts. Although these cells together play a crucial role in bone remodeling, only a few reports are available on the common factors involved in the differentiation of the two types of cells. Here, we show family with sequence similarity 102 member A (Fam102a) as a bone-remodeling factor that positively regulates both osteoclast and osteoblast differentiation.
View Article and Find Full Text PDFBone Res
January 2025
Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!