Samples containing highly unbalanced DNA mixtures from two individuals commonly occur both in forensic mixed stains and in peripheral blood DNA microchimerism induced by pregnancy or following organ transplant. Because of PCR amplification bias, the genetic identification of a DNA that contributes trace amounts to a mixed sample represents a tremendous challenge. This means that standard genetic markers, namely microsatellites, also referred as short tandem repeats (STR), and single-nucleotide polymorphism (SNP) have limited power in addressing common questions of forensic and medical genetics. To address this issue, we developed a molecular marker, named DIP-STR that relies on pairing deletion-insertion polymorphisms (DIP) with STR. This novel analytical approach allows for the unambiguous genotyping of a minor component in the presence of a major component, where DIP-STR genotypes of the minor were successfully procured at ratios up to 1:1,000. The compound nature of this marker generates a high level of polymorphism that is suitable for identity testing. Here, we demonstrate the power of the DIP-STR approach on an initial set of nine markers surveyed in a Swiss population. Finally, we discuss the limitations and potential applications of our new system including preliminary tests on clinical samples and estimates of their performance on simulated DNA mixtures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675636 | PMC |
http://dx.doi.org/10.1002/humu.22280 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
Resveratrol, a bioactive phytoalexin, has been extensively studied as a pharmaceutical and nutraceutical candidate for the treatment of various diseases. Although its therapeutic effects have been largely attributed to its anti-oxidant properties, its underlying mechanisms and dose dependency are not well understood. Recent studies have shown that cell-free chromatin particles (cfChPs), which are released daily from billions of dying cells, can enter circulation and be internalized by healthy cells, wherein they trigger various damaging effects, including double-strand DNA breaks.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department Poultry Health, Royal GD, 7418 EZ Deventer, The Netherlands.
Some strains of can cause spondylitis and bacterial osteomyelitis. Translocation and bacteremia are pivotal to the pathogenesis and clinical disease. Virulence typing to distinguish extra-intestinal disease of lesion from cloacal strains remains difficult.
View Article and Find Full Text PDFBiomolecules
January 2025
National Research Center "Kurchatov Institute", 123182 Moscow, Russia.
The methylotrophic yeast belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.
We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.
View Article and Find Full Text PDFMethods Protoc
January 2025
The Center for Forensic Science Research and Education, 206 Welsh Road, Horsham, PA 19440, USA.
This differential extraction protocol details the steps for isolating DNA from sample pads used in lateral flow immunochromatographic (LFI) tests, particularly for cases involving mixed biological samples such as semen and menstrual blood, or other evidence related to sexual assault. This procedure utilizes a differential extraction technique applied to sample pads from immunochromatographic tests, where the sample pads serve as the substrate. The method involves two sequential lysis steps to effectively separate non-sperm and sperm fractions, enabling the targeted isolation of distinct cell types for downstream DNA analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!