Alzheimer's disease (AD) is a common, genetically complex, fatal neurodegenerative disorder of late life. Although several genes are known to play a role in early-onset AD, identification of the genetic basis of late onset AD (LOAD) has been challenging, with only the APOE gene known to have a high contribution to both AD risk and age-at-onset. Here, we present the first genome-scan analysis of the complete, well-characterized University of Washington LOAD sample of 119 pedigrees, using age-at-onset as the trait of interest. The analysis approach used allows for a multilocus trait model while at the same time accommodating age censoring, effects of APOE as a known genetic covariate, and full pedigree and marker information. The results provide strong evidence for linkage of loci contributing to age-at-onset to genomic regions on chromosome 6q16.3, and to 19q13.42 in the region of the APOE locus. There was evidence for interaction between APOE and the locus on chromosome 6q and suggestive evidence for linkage to chromosomes 11p13, 15q12-14, and 19p13.12. These results provide the first independent confirmation of an AD age-at-onset locus on chromosome 6 and suggest that further efforts towards identifying the underlying causal locus or loci are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654841PMC
http://dx.doi.org/10.1002/ajmg.b.32133DOI Listing

Publication Analysis

Top Keywords

locus chromosome
12
alzheimer's disease
8
evidence linkage
8
apoe locus
8
locus
5
age-at-onset
5
genome scan
4
scan familial
4
familial late-onset
4
late-onset alzheimer's
4

Similar Publications

Identification of a critical interval for type 2 diabetes QTL on chromosome 4 in DDD-A mice.

Mamm Genome

January 2025

Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0901, Japan.

Type 2 diabetes mellitus (T2D) in male KK-A and B6-A mice is typically associated with hyperinsulinemia, whereas male DDD-A mice exhibit a marked decrease in circulating insulin levels due to the loss of pancreatic islet β-cells. T2D in male DDD-A mice is linked to Nidd/DDD, a significant quantitative trait locus (QTL) mapped with a 95% confidence interval (CI) between 112.44 and 151.

View Article and Find Full Text PDF

Multi-omics analysis identified the GmUGT88A1 gene, which coordinately regulates soybean resistance to cyst nematode and isoflavone content.

Plant Biotechnol J

January 2025

Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.

Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.

View Article and Find Full Text PDF

Identification and quantitative trait locus mapping of Tartary buckwheat pre-harvest sprouting.

J Sci Food Agric

January 2025

Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Huaxi University Town, Gui'an New District, China.

Background: Tartary buckwheat (Fagopyrum tartaricum) is particularly vulnerable to pre-harvest sprouting (PHS) due to its extended flowering and fruiting cycle, especially during periods of prolonged rainfall. This susceptibility has significant adverse effects on yield, quality and post-harvest processing. In this study, a recombinant inbred lines (RILs) population (XJ-RILs) was developed from a cross between the PHS-susceptible Tartary buckwheat variety 'Xiaomiqiao' (female parent) and the highly PHS-resistant variety 'Jinqiaomai 2' (male parent).

View Article and Find Full Text PDF

Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities.

J Mol Evol

January 2025

Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.

The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus.

View Article and Find Full Text PDF

Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.

Methods And Results: We devised a targeted NGS panel spanning an 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!