The present paper deals with the distribution of sediment and sediment-bound nutrients in two important coastal lagoons of southern Kerala such as the Ashtamudi Estuarine Lagoon in the Kollam district and the Kadinamkulam Lagoon in the Thiruvananthapuram district. Among the two lagoons, the former is coast perpendicular, and the latter is coast parallel. An analysis of the textural characteristics reveals that, in both lagoons, the estuarine mouth and areas close to it are dominated by sand and sand-rich sediment species, indicating a high-energy depositional regime prevailing the region. On the other hand, the silt and clay dominant arms are almost sheltered and enjoy a low-energy depositional environment. The nutrient and organic carbon contents in the sheltered areas are significantly higher than the most dynamic high-energy estuarine mouth regions. This peculiar behaviour of these coastal water bodies has to be given adequate importance while laying down strategies for the conservation and management of these fragile aquatic systems in the south-western coast of India in particular and tropical coasts of the world in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-013-3092-8 | DOI Listing |
Environ Res
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA. Electronic address:
Phosphate (PO(III)) contamination in water bodies poses significant environmental challenges, necessitating efficient and accurate methods to predict and optimize its removal. The current study addresses this issue by predicting the adsorption capacity of PO(III) ions onto biochar-based materials using five probabilistic machine learning models: eXtreme Gradient Boosting LSS (XGBoostLSS), Natural Gradient Boosting, Bayesian Neural Networks (NN), Probabilistic NN, and Monte-Carlo Dropout NN. Utilizing a dataset of 2952 data points with 16 inputs, XGBoostLSS demonstrated the highest R (0.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
EPHE-PSL, Sorbonne Université, CNRS, UMR 7619 METIS, 75005, Paris, France.
Freshwater environments are biodiversity hotspots under multiple pressures, including pesticide exposure. S-metolachlor, a widely used herbicide, can induce genotoxic, cytotoxic and physiological effects in captive fish, but we have a limited understanding of the effects of exposure to S-metolachlor in free-living vertebrates. We carried out an original field experiment using integrative approaches across biological levels and temporal scales.
View Article and Find Full Text PDFSci Rep
December 2024
School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
Hearing loss (HL) in mid-life has been suggested as a risk factor for cognitive decline. It is unclear whether this relationship is due to deprivation of auditory input alone, degenerative processes, or a combination. Animal models are useful to investigate underlying neural mechanisms as human studies can be confounded by various factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!