Hybrid models for gene expression combine stochastic and deterministic representations of the underlying biophysical mechanisms. According to one of the simplest hybrid formalisms, protein molecules are produced in randomly occurring bursts of a randomly distributed size while they are degraded deterministically. Here, we use this particular formalism to study two key regulatory motifs-the autoregulation loop and the toggle switch. The distribution of burst times is determined and used as a basis for the development of exact simulation algorithms for gene expression dynamics. For the autoregulation loop, the simulations are compared to an analytic solution of a master equation. Simulations of the toggle switch reveal a number of qualitatively distinct scenarios with implications for the modelling of cell-fate selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-013-9811-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!