Human HDL containing a novel apoC-I isoform induces smooth muscle cell apoptosis.

Cardiovasc Res

Department of Internal Medicine and Department of Pediatrics, Scott & White Healthcare, Temple, TX 76508, USA.

Published: April 2013

Aims: We discovered that some adults with coronary heart disease (CHD) have a high density lipoprotein (HDL) subclass which induces human aortic smooth muscle cell (ASMC) apoptosis in vitro. The purpose of this investigation was to determine what properties differentiate apoptotic and non-apoptotic HDL subclasses in adults with and without CHD.

Methods And Results: Density gradient ultracentrifugation was used to measure the particle density distribution and to isolate two HDL subclass fractions, HDL2 and HDL3, from 21 individuals, including 12 without CHD. The HDL fractions were incubated with ASMCs for 24 h; apoptosis was quantitated relative to C2-ceramide and tumour necrosis factor-alpha (TNF-α). The observed effect of some HDL subclasses on apoptosis was ∼6-fold greater than TNF-α and ∼16-fold greater than the cell medium. We observed that apoptotic HDL was (i) predominately associated with the HDL2 subclass; (ii) almost exclusively found in individuals with a higher apoC-I serum level and a novel, higher molecular weight isoform of apoC-I; and (iii) more common in adults with CHD, the majority of whom had high (>60 mg/dL) HDL-C levels.

Conclusions: Some HDL subclasses enriched in a novel isoform of apoC-I induce extensive ASMC apoptosis in vitro. Individuals with this apoptotic HDL phenotype generally have higher apoC-I and HDL-C levels consistent with an inhibitory effect of apoC-I on cholesteryl ester transfer protein activity. The association of this phenotype with processes that can promote plaque rupture may explain a source of CHD risk not accounted for by the classical risk factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598419PMC
http://dx.doi.org/10.1093/cvr/cvt014DOI Listing

Publication Analysis

Top Keywords

hdl subclasses
12
smooth muscle
8
muscle cell
8
hdl
8
hdl subclass
8
asmc apoptosis
8
apoptosis vitro
8
apoptotic hdl
8
higher apoc-i
8
isoform apoc-i
8

Similar Publications

Effects of Longer-Term Mixed Nut Consumption on Lipoprotein Particle Concentrations in Older Adults with Overweight or Obesity.

Nutrients

December 2024

Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands.

Background: Recently, we reported that longer-term mixed nut intake significantly reduced serum total and low-density lipoprotein (LDL)-cholesterol, but these markers may not fully capture lipoprotein-related cardiovascular disease (CVD) risk.

Objectives: This randomized, controlled, single-blinded, crossover trial in older adults with overweight or obesity examined the effects of longer-term mixed nut consumption on lipoprotein particle size, number, and lipid distribution.

Methods: Twenty-eight participants (aged 65 ± 3 years; BMI 27.

View Article and Find Full Text PDF

Association of Small HDL Subclasses with Mortality Risk in Chronic Kidney Disease.

Antioxidants (Basel)

December 2024

Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.

High-density lipoproteins (HDL) exist in various subclasses, with smaller HDL particles possessing the highest anti-oxidative and anti-inflammatory properties. Understanding the role of these specific subclasses in chronic kidney disease (CKD) could provide valuable insights into disease progression and potential therapeutic targets. In the present study, we assessed HDL subclass composition in 463 patients with CKD stage 2-4 using nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Lysoglycerophospholipid metabolism alterations associated with ambient fine particulate matter exposure: Insights into the pro-atherosclerotic effects.

Environ Pollut

January 2025

SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China. Electronic address:

The biological pathways connecting ambient fine particulate matter (PM)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM. This study investigated the changes of LysoGPLs in response to PM exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM exposure.

View Article and Find Full Text PDF

Introduction Insulin resistance is a fundamental factor in the pathogenesis of polycystic ovarian syndrome (PCOS) and has been found to mediate a close association with obesity and dyslipidemia. While the anti-diabetic and anti-inflammatory properties of fenugreek seed extracts have been demonstrated, research on its anti-hyperlipidemic properties is still in its novice stage, with inconclusive evidence. The present study assessed the impact of fenugreek seed extracts rich in furostanolic saponins (Furocyst) on lipid profiles across different categories of body mass index (BMI) in women with PCOS.

View Article and Find Full Text PDF

Background: Recent findings point to the key role of cathepsin S (CTSS) in the survival of malignant cells, as well as the significance of the anti-apoptotic properties of high-density lipoprotein (HDL) that contribute to enhanced cell survival. The purpose of this study is to analyse CTSS as a potential biomarker in lymphoma. Also, in order to better understand the role of CTSS in the origin and development of lymphoma, its association with cystatin C (Cys C), lipids, and inflammatory markers was analysed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!