Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized CupA is obligatory for copper resistance. The crystal structures of the soluble domain of CupA and the N-terminal metal-binding domain (MBD) of CopA (CopA(MBD)) reveal isostructural cupredoxin-like folds that each harbor a binuclear Cu(I) cluster unprecedented in bacterial copper trafficking. NMR studies reveal unidirectional Cu(I) transfer from the low-affinity site on the soluble domain of CupA to the high-affinity site of CopA(MBD). However, copper binding by CopA(MBD) is not essential for cellular copper resistance, consistent with a primary role of CupA in cytoplasmic Cu(I) sequestration and/or direct delivery to the transmembrane site of CopA for cellular efflux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578076PMC
http://dx.doi.org/10.1038/nchembio.1168DOI Listing

Publication Analysis

Top Keywords

copper resistance
20
streptococcus pneumoniae
8
pneumoniae copper
8
soluble domain
8
domain cupa
8
copper
7
cupa
6
resistance
5
cui
5
structural paradigm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!