Chemical investigation of stem bark of Crataeva nurvala afforded 5,7-dimethoxy-3-phenyl-1-ethyl-1,4-dihydro-4-quinolone and a steroidal glycoside with unprecedented pentacyclic ring system named crataemine (1a) and crataenoside (2) respectively. The structures of the compounds were determined by spectroscopic analysis. A series of compounds with modification at position 1 of 1a (1a-1c) were prepared. All compounds were screened for cytotoxic activity against HeLa, PC-3 and MCF-7 cells. Only 1a and 2 showed potency against all three cells. Mechanism based study for activity of the compounds demonstrated that it could block the migration of more aggressive HeLa and PC-3 cells and prevent their colony formation ability as well. The compounds potentiated apoptosis in HeLa and PC-3 cells in a significant manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2012.12.017DOI Listing

Publication Analysis

Top Keywords

hela pc-3
12
steroidal glycoside
8
stem bark
8
bark crataeva
8
crataeva nurvala
8
pc-3 cells
8
compounds
5
cytotoxic quinolone
4
quinolone alkaloid
4
alkaloid pentacyclic
4

Similar Publications

Effective mRNA transfection of tumor cells using cationic triacyl lipid‑based mRNA lipoplexes.

Biomed Rep

February 2025

Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.

Previously, it was reported that mRNA/cationic liposome complexes (mRNA lipoplexes) composed of the cationic triacyl lipid, 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino)-,,- trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12), with 1,2-dioleoyl-glycero-3-phosphoethanolamine and poly(ethylene glycol) cholesteryl ether, induce high protein expression in human cervical carcinoma HeLa cells. In the present study, the authors aimed to optimize mRNA transfection using TC-1-12-based mRNA lipoplexes. mRNA lipoplexes were prepared at various charge ratios (+:-) using modified ethanol injection (MEI) and thin-film hydration (TFH) methods and compared the protein expression efficiency after transfection of HeLa cells with the developed mRNA lipoplexes.

View Article and Find Full Text PDF

Novel inhibitors of PARP1 and PARP14: design, synthesis, and potentiation of cisplatin efficacy in cancer.

Future Med Chem

January 2025

Medicinal Chemistry Group, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.

Background: Poly(ADP-ribose) polymerase (PARP) is a superfamily of enzymes involved in cell survival. Both PARP1 and PARP14 are overexpressed in malignancies. No clinically approved PARP14 inhibitors are available, and PARP1 inhibitors are generally nonspecific, resulting in a need for a more diverse library of selective PARP1 and PARP14 inhibitors.

View Article and Find Full Text PDF

Secondary metabolites obtained from plants are among the most commonly encountered chemotherapeutics used in cancer treatment. Plants contain thousands of metabolites; therefore, it is important to reach the compound primarily responsible for activity by fractionating plant extracts through activity-guided isolation. The cytotoxic activities of C.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined the chemical diversity of the SWUF15-40 fungus grown in a yeast-malt extract medium, shifting from the previous PDB medium using the OSMACs strategy, which resulted in discovering numerous bioactive compounds.
  • - Detailed analysis using IR, NMR, MS, and XRD techniques led to the identification of two new isopimarane derivatives, three guaiane derivatives, and four known compounds.
  • - A cyclic pentapeptide from the fungus showed promising anti-cancer activity against several cell lines and inhibited nitric oxide production, indicating that adjusting growth conditions can enhance the discovery of bioactive compounds in fungi.
View Article and Find Full Text PDF

Polyphenols are natural biomolecules known for circumventing several diseases including cancer with little adverse effects. This study aimed to investigate the polyphenol enriched fractions from the leaf extract of Asystasia gangetica for their composition, biological activities such as antioxidant activity, haemolytic effects, and in vitro cytotoxicity against cancer cell lines. LC-MS/MS analysis of the enriched fractions identified a total of 35 distinct polyphenols with caffeic acid, luteolin, apigenin, and protocatechuic acid at higher concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!