The luminescence of DNA-bound [Ru(phen)(2)dppz](2+) is shown to be highly sensitive to environmental conditions such as ionic strength, temperature, and the sequence and secondary structure of the nucleic acid, although not to bulky DNA substituents in the major groove. Each enantiomer has two characteristic lifetimes with any polynucleotide and their relative amplitudes vary as a function of binding ratio. For [poly(dA-dT)](2) as a model sequence, the longer lifetime for Δ-[Ru(phen)(2)dppz](2+) has been assigned to canted intercalation of the complex and the shorter lifetime is ascribed to symmetric intercalation. At a fixed binding ratio, the longer lifetime amplitude increases with increasing ionic strength, without significant change in lifetimes. Increasing temperature has a similar effect, but also affects lifetimes. In general, emission is strongest with AT-rich polynucleotides and with higher-order secondary structures, with intensity increasing as single-stranded < duplex < triplex. However, sequence-context and secondary duplex structure also influence the photophysics since emission with [poly(dA)]·[poly(dT)] is significantly higher than with [poly(dA-dT)](2) or [poly(rA)]·[poly(rU)]. The strong influence of different environmental conditions on the emission of nucleic acid-bound [Ru(phen)(2)dppz](2+) reflects subtle heterogeneities that are inherent elements of DNA recognition by small molecules, amplified by large changes in photophysics caused by differential exposure of the dppz nitrogens to groove hydration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt32555eDOI Listing

Publication Analysis

Top Keywords

ionic strength
12
strength temperature
8
environmental conditions
8
binding ratio
8
longer lifetime
8
sensitivity [ruphen2dppz]2+
4
[ruphen2dppz]2+ light
4
light switch
4
emission
4
switch emission
4

Similar Publications

Migration of vanadium oxide nanoparticles in saturated porous media.

J Hazard Mater

January 2025

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.

Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.

View Article and Find Full Text PDF

Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength.

Food Chem

January 2025

College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:

The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!