Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach.

J Environ Manage

Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.

Published: March 2013

A greenhouse experiment was used to test the applicability of [S,S]-Ethylenediaminedisuccinic acid (EDDS) and nitrilotriacetic acid (NTA) at rates of 2.5 mmol kg(-1) and 5.0 mmol kg(-1), respectively, to increase the uptake of Cd by water spinach (Ipomoea aquatic Forsk) in soils with 2.5-30 mg Cd kg(-1). The addition of EDDS and NTA significantly increased water soluble Cd in soils. However, the Cd concentration in the root and shoot was higher in the NTA treatment than in the EDDS treatment. No instance of Cd hyperaccumulation was observed; however, the 5.0 mmol kg(-1) NTA treatment for soil with 30 mg Cd kg(-1) caused the Cd concentration to increase to 86 mg kg(-1), which is close to the critical concentration (100 mg kg(-1)) of a hyperaccumulator. The total Cd uptake in the treatments of EDDS and NTA for soils with 2.5, 5.0, and 10 mg Cd kg(-1) was acceptable, and was higher than the control. The level of 5.0 mmol kg(-1) EDDS was excessively high for enhanced phytoextraction in soils with 20 and 30 mg Cd kg(-1). Water spinach for Cd phytoextraction is a viable alternative to using herbaceous hyperaccumulators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2012.12.028DOI Listing

Publication Analysis

Top Keywords

mmol kg-1
16
edds nta
12
water spinach
12
kg-1
10
enhanced phytoextraction
8
nta treatment
8
soils kg-1
8
edds
6
nta
5
nta enhanced
4

Similar Publications

This study addresses the growing interest in nutritional supplements that improve athletic performance in endurance sports. Previous research suggests that nitrates in beetroot juice enhance blood vessel dilation and oxygen delivery to muscles. However, the effects of these nitrates on cardiopulmonary performance in female athletes remain underexplored.

View Article and Find Full Text PDF

Sulfur hexafluoride (SF), widely used in electric power systems, is one of the most potent greenhouse gases. Efficient separation of SF/N by adsorptive separation technology based on porous materials is of great significance in the industry yet remains a daunting challenge. Herein, a novel strategy is introduced to construct unique pore channels with multiple SF nano-traps by precisely selecting bipyrazole ligands to design the nonpolar surface of microporous metal-organic frameworks (MOFs), which significantly enhances the material's affinity for SF.

View Article and Find Full Text PDF

Purpose: This study investigated the effect of an individualized sodium bicarbonate (SB) supplementation-timing strategy on 200-m and 400-m freestyle swimming time-trial (TT) performance.

Methods: Thirteen well-trained swimmers (8 men and 5 women; mean [SD] 22 [3] y, 1.76 [0.

View Article and Find Full Text PDF

Exogenous organic acids promoted phytoremediation by Hydrangea macrophylla in cadmium‑contaminated soil.

Ecotoxicol Environ Saf

December 2024

The College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China. Electronic address:

Cadmium (Cd) contaminants with high toxicity and mobility seriously threatens the ecological environment and human safety. Hydrangea macrophylla is a potential plant for Cd-contaminated soil remediation. Exogenous organic acids have been proven to effectively enhance the phytoremediation of soil contaminated with Cd.

View Article and Find Full Text PDF

Objectives: This article compares metabolic, pancreatic, and gut-derived hormone responses to isomaltulose ingestion, before versus during submaximal sustained exercise, in adults with type 1 diabetes (T1D) using automated insulin delivery systems.

Methods: In a randomized, cross-over trial, eight participants with T1D being treated with automated insulin pumps (five females, age: 47 ± 16 years, BMI: 27.5 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!