Different pre-treatment severities by thermo-alkaline conditions (100°C, Ca(OH)2) on press mud were evaluated for different pre-treatment time and lime loading. COD solubilization and the methane yield enhancement were assessed. The biochemical methane potential was determined in batch assays under mesophilic conditions (37±1°C). The best pre-treatment resulted in a surplus of 72% of methane yield, adding 10g Ca(OH)2 100g(-1)TS(-1) for 1h. Pre-treatment also increased the COD solubilization, but the optimal severity for COD solubilization as determined by response surface methodology did not ensure the highest methane production. Inhibitory effects on anaerobic digestion were noticed when the severity was increased. These results demonstrate the relevance of thermo-alkaline pre-treatment severity in terms of both lime loading and pre-treatment time to obtain optimal anaerobic biodegradability of lignocellulosic biomass from press mud.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2012.12.167 | DOI Listing |
PeerJ
January 2025
Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.
With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. is one of the few plants capable of surviving in RM-affected soils.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
ACS Omega
August 2024
MOL Pakistan Oil and Gas Company Ltd. B.V. Islamabad 75400, Pakistan.
The success of any drilling activity mainly depends on the characteristics of the drilling fluid. Therefore, a high-performance drilling fluid is substantial for any drilling operation. During overbalance drilling operations, the drilling mud invades the permeable formations and causes the loss of circulation, which is responsible for nonproductive time events.
View Article and Find Full Text PDFBMC Plant Biol
June 2024
Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
Biochar (BC) is an organic compound formed by the pyrolysis of organic wastes. Application of BCs as soil amendments has many benefits including carbon sequestration, enhanced soil fertility and sustainable agriculture production. In the present study, we acidified the different BCs prepared from rice straw, rice husk, wheat straw, cotton stalk, poultry manure, sugarcane press mud and vegetable waste; following which, we applied them in a series of pot experiments.
View Article and Find Full Text PDFWaste Manag
June 2024
Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India. Electronic address:
In the present study, press mud (PM), a major waste by-product from sugar industries, was subjected to hydrothermal pretreatment (HTP) to create resource recovery opportunities. The HTP process was performed with the PM samples in a laboratory scale high pressure batch reactor (capacity = 0.7 L) at 160 °C and 200 °C temperatures (solids content = 5 % and 30 %).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!