Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were examined for the electrospun samples. The electrospun PVA samples generally had thinner and more uniform fibers than the electrospun PLA samples. For the PVA samples, an increase in total solids content and PVA to gelatin ratio generally resulted in higher average fiber diameter values and wider diameter distributions. Pollock gelatin in both types of electrospun samples remained amorphous. The PVA in electrospun samples had comparable melting temperatures to that of neat PVA, whereas the PLA in electrospun samples had slightly lower melting temperatures than that of neat PLA. Also, the PLA in electrospun samples had crystallization temperatures approximately 30 °C lower than that in neat PLA. This was due to better alignment of PLA chains during electrospinning, which resulted in the chains being more readily crystallized at lower temperatures. In addition, the electrospun PVA samples completely dissolved in water at room temperature after soaking for one day, whereas the electrospun PLA samples remained intact even after soaking for three days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2013.01.010 | DOI Listing |
Int J Biol Macromol
December 2024
Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan. Electronic address:
This study presents the first development of Cu (I) acylthiourea complexes (C1-C5) incorporated polycaprolactone/lignin (PCL/Lig) electrospun nanofiber composites (PCL/Lig@Cu(I)). Electrospinning conditions and mass ratios of PCL and lignin were optimized, followed by the incorporation of varying concentrations of Cu(I) complexes. Structural, morphological, and thermal properties were characterized using SEM, TEM, FT-IR, XRD, TGA and WCA analyses.
View Article and Find Full Text PDFRSC Adv
December 2024
Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology 6th of October City Giza Egypt
Patients with rheumatoid arthritis (RA), an inflammatory illness that affects the synovial joints, have a much worse quality of life. Mostly, oral or injectable formulations are used to treat RA, underscoring the critical need for an innovative medication delivery method to enhance therapeutic outcomes and patient compliance. The present study integrated 3D bioprinting and electrospinning technologies to create a unique double-layered transdermal patch (TDDP) for the treatment of RA.
View Article and Find Full Text PDFBiomed Mater
December 2024
Shaheed Beheshti University of Medical Sciences, No 53 west ghobadian street, Tehran, 1516745811, Iran (the Islamic Republic of).
The combining of therapeutic agents with electrospun nanofibers boosts their regeneration potential; therefore, Researchers have increasingly turned towards the development of electrospun nanofiber scaffolds to encapsulate or surface-adsorb biological payloads, such as cytokines, exosomes, peptides, nucleic acids, and enzymes. Due to their high surface-to-volume ratio, ease of manufacturing, and drug-loading capacity, electrospun nanofibers are hopeful in tissue engineering and scaffold fabrication. Electrospun multilayer scaffolds offer a promising construction for preserving the integrity and bioactivity of therapeutic factors while permitting the controlled and prolonged release of biomolecules into the environment.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Electrical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Biological macromolecules such as polysaccharides and proteins, due to their excellent biocompatibility and biodegradability, are ideal for promoting Skin Tissue Engineering (STE) both in vitro and in vivo. In this study, a core-shell electrospun scaffold was fabricated using the coaxial electrospinning method, with Polyurethane (PU) forming the shell and a mixture of Starch (ST), Propolis Extract (PE), and Hyaluronic Acid (HA) forming the core. The scaffold's morphology was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), confirming the successful formation of a well-defined core-shell structure.
View Article and Find Full Text PDFFood Res Int
January 2025
Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey.
Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!