A hypoxia-associated gene signature (metagene) was previously derived via in vivo data-mining. In this study, we aimed to investigate whether this approach could identify novel hypoxia regulated genes. From an initial list of nine genes, three were selected for further study (BCAR1, IGF2BP2 and SLCO1B3). Ten cell lines were exposed to hypoxia and interrogated for the expression of the three genes. All three genes were hypoxia inducible in at least one of the 10 cell lines with SLCO1B3 induced in seven. SLCO1B3 was studied further using chromatin immunoprecipitation and luciferase assays to investigate hypoxia inducible factor (HIF) dependent transcription. Two functional HIF response elements were identified within intron 1 of the gene. The functional importance of SLCO1B3 was studied by gene knockdown experiments followed by cell growth assays, flow cytometry and Western blotting. SLCO1B3 knockdown reduced cell size and 3-dimensional spheroid volume, which was associated with decreased activation of the mammalian target of rapamycin (mTOR) pathway. Finally, Oncomine analysis revealed that head and neck and colorectal tumours had higher levels of SLCO1B3 compared to normal tissue. Thus, the knowledge based approach for deriving gene signatures can identify novel biologically relevant genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejca.2012.12.003 | DOI Listing |
Cell Commun Signal
January 2025
Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.
View Article and Find Full Text PDFJ Stomatol Oral Maxillofac Surg
January 2025
Department of Stomatology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519090, China. Electronic address:
Objective: To investigate the reparative effect of hypoxia pretreated hAMSCs on radiation-induced damage to salivary gland function in mice.
Methods: hAMSCs were separated from human amniotic tissues by mechanical and enzymatic digestion methods and a 15 Gy electron beam was used to locally irradiate the neck of mouse to create a salivary gland injury model. The mouse models were randomly divided into four groups: control group, IR+PBS group, IR+Nor group and IR+HP group.
Int Immunopharmacol
January 2025
Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China. Electronic address:
Purpose: Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear.
View Article and Find Full Text PDFInt J Hyperthermia
December 2025
Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.
This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:
The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!