C9orf72 G4C2 repeat expansion is a major cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Its role in Alzheimer's disease (AD) is less clear. We assessed the prevalence of G4C2 pathogenic repeat expansions in Flanders-Belgian patients with clinical AD or mild cognitive impairment (MCI). In addition, we studied the effect of non-pathogenic G4C2 repeat length variability on susceptibility to AD, and on AD cerebrospinal fluid (CSF) biomarker levels. A pathogenic repeat expansion was identified in 5 of 1217 AD patients (frequency <1%). No pathogenic expansions were observed in patients with MCI (n = 200) or control individuals (n = 1119). Nonpathogenic repeat length variability was not associated with AD, risk of conversion to AD in MCI individuals, or CSF biomarker levels. We conclude that pathogenic C9orf72 G4C2 repeat expansions can be detected in clinical AD patients and could act as a contributor to AD pathogenesis. Non-pathogenic repeat length variability did not affect risk of AD or MCI, nor AD biomarker levels in CSF, indicating that C9orf72 is not a direct AD risk factor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.019 | DOI Listing |
Sci Rep
December 2024
Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. More than fifty genes carrying causative or disease-modifying variants have been identified since the 1990s, when the first ALS-associated variant in the gene SOD1 was discovered. The most commonly mutated ALS genes in the European populations include the C9orf72, SOD1, TARDBP and FUS.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA.
The GC hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.
View Article and Find Full Text PDFChembiochem
December 2024
University of Palermo: Universita degli Studi di Palermo, STEBICEF, Viale delle Scienze, ed.17, 90128, Palermo, ITALY.
The most recurrent familial cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the presence of an abnormal number of intronic GGGGCC (G4C2) repetitions in the C9orf72 gene, which has been proposed to drive ALS/FTD pathogenesis. Recently, it has been shown that such G4C2 repetitions can fold into G-quadruplex (G4) secondary structures. These G4s have been selectively stabilized by small-molecule binders, furnishing proof of principle that targeting these non-canonical nucleic acid sequences represents a novel and effective therapeutic strategy to tackle neurodegenerative disorders.
View Article and Find Full Text PDFLife Sci Alliance
February 2025
Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
A G4C2 hexanucleotide repeat expansion in is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models.
View Article and Find Full Text PDFAnal Biochem
February 2025
Department of Biology, Haverford College, 370 Lancaster Ave, Haverford, PA, 19041, USA. Electronic address:
Sedimentation velocity, using an analytical ultracentrifuge equipped with fluorescence detection, and electrophoresis methods are used to study aggregation of proteins in transgenic animal model systems. Our previous work validated the power of this approach in an analysis of mutant huntingtin aggregation. We demonstrate that this method can be applied to another neurodegenerative disease studying the aggregation of three dipeptide repeats (DPRs) produced by aberrant translation of mutant c9orf72 containing large GC hexanucleotide repeats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!