Synapses continually replenish their synaptic vesicle (SV) pools while suppressing spontaneous fusion events, thus maintaining a high dynamic range in response to physiological stimuli. The presynaptic protein complexin can both promote and inhibit fusion through interactions between its α-helical domain and the SNARE complex. In addition, complexin's C-terminal half is required for the inhibition of spontaneous fusion in worm, fly, and mouse, although the molecular mechanism remains unexplained. We show here that complexin's C-terminal domain binds lipids through a novel protein motif, permitting complexin to inhibit spontaneous exocytosis in vivo by targeting complexin to SVs. We propose that the SV pool serves as a platform to sequester and position complexin where it can intercept the rapidly assembling SNAREs and control the rate of spontaneous fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559010PMC
http://dx.doi.org/10.1016/j.neuron.2012.11.005DOI Listing

Publication Analysis

Top Keywords

spontaneous fusion
16
position complexin
8
complexin's c-terminal
8
complexin
5
spontaneous
5
fusion
5
synaptic vesicles
4
vesicles position
4
complexin block
4
block spontaneous
4

Similar Publications

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Background: Early esophageal fistula formation following anterior cervical spine surgery presents a formidable clinical challenge, necessitating astute rehabilitative nursing management. Such fistulas, if not promptly and effectively managed, can precipitate grave complications including mediastinitis, sepsis, respiratory failure, and, in severe instances, mortality. This underscores the critical need for immediate, comprehensive nursing interventions designed to mitigate these risks and enhance patient outcomes.

View Article and Find Full Text PDF

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

Case: We present 3 cases demonstrating radiographic posterior subluxation in lateral functional radiographs taken in the flexed-seated position. Two of the patients were asymptomatic, and 2 showed the posterior translation of the femoral head, which is almost a dislocation, with spontaneous reduction. The subluxation can occur not only in patients after lumbar fusion surgery but also in patients with relatively normal lumbar spine due to excessive hip flexion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!