During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac303403pDOI Listing

Publication Analysis

Top Keywords

moisture content
28
content quantification
16
nir spectroscopy
16
quantification freeze-drying
12
in-line moisture
12
multipoint nir
12
moisture
8
nir
8
freeze-drying process
8
freeze-dryer shelf
8

Similar Publications

Introduction: Frozen pork can reduce the quality of the meat and alter the digestibility and bioavailability of meat proteins in the human body. In this study, we investigated the changes in the basic composition during frozen storage and their effects on the structural properties of digestion products after protein digestion.

Methods: The impacts of frozen storage at different temperatures (-8, -18, -25, and -40°C) and for different times (1, 3, 6, 9, and 12 months) on the basic components and digestive characteristics of pork were evaluated.

View Article and Find Full Text PDF

Hydrologic outputs generated over the Great Lakes with a calibrated version of the GEM-Hydro model.

Sci Data

January 2025

Meteorological Research Division, Environment and Climate Change Canada, Dorval, QC, Canada.

This dataset contains outputs from a calibrated version of the GEM-Hydro model developed at Environment and Climate Change Canada (ECCC) and is available on the Federated Research Data Repository. The dataset covers the basins of the Laurentian Great Lakes and the Ottawa River and extends over the period 2001-2018. The data consist of all variables (hourly fluxes and state variables) related to the water balance of GEM-Hydro's land-surface scheme (including precipitation, surface and sub-surface runoff, drainage, evaporation, snow water equivalent, soil moisture…) and mean daily streamflow at 212 gauge locations.

View Article and Find Full Text PDF

Alginate films were prepared from the brown seaweed Dictyota mertensii using glycerol as a plasticizer. The effects of extraction conditions-time, temperature, and NaCO concentration-on the optical, barrier, and mechanical properties of the films were investigated using a central composite design (CCD). ANOVA and F tests confirmed the models' statistical significance at p ≤ 0.

View Article and Find Full Text PDF

Assessment of temperature dynamics during methane oxidation in a pilot scale compost biofilter.

Bioresour Technol

January 2025

Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510 Ciudad de México, México. Electronic address:

Biological methane oxidation can sustain high temperatures in organic matrices, such as landfill covers and compost biofilters. This study investigates the temperature dynamics, methane removal efficiency, and microbial community responses in a pilot scale compost biofilter under three methane concentrations (2, 4, and 8 % v v in air) with a 23-minute empty bed residence time. Complete methane removal was achieved at 2 %, with compost bed temperatures reaching 51 °C.

View Article and Find Full Text PDF

This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!