Porous and coarse (5-10 μm) LiFePO₄/C composites with excellent electrochemical performance were synthesized by a growth technology using nanostructured (100-200 nm) LiFePO₄ as seed crystals for the 2nd crystallization process. The porous and coarse LiFePO₄/C presented a high initial discharge capacity (∼155 mA h g⁻¹ at 0.1 C), superior rate-capability (∼100 mA h g⁻¹ at 5 C, ∼65 % of the discharge capacity at 0.1 C), and excellent cycling performance (∼131 mA h g⁻¹, ∼98 % of its initial discharge capacity after 100 cycles at 1 C). The improvement in the rate-capability of the LiFePO₄/C was attributed to the high reaction area resulted from the pore tunnels formed inside LiFePO₄ particles and short Li-ion diffusion length. The improved cycling performance of the LiFePO₄/C resulted from the enhanced structural stability against Li-deficient LiFePO₄ phase formation after cycling by the expansion of the 1D Li-ion diffusion channel in the LiFePO₄ crystal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am302560m | DOI Listing |
Bull Environ Contam Toxicol
January 2025
College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
The pollutants after were discharged into the water can gradually degrade through the self-purification. The oxygen consumption and pollutant degradation rates characterize the self-purification of small and medium-sized streams, while the dynamics of the two characteristics for large rivers has not been reported yet. The in-situ investigation for 297 sites in the 1700 km stream of the Yangtze River was conducted.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Background: Lung cancer represents a significant global health concern and constitutes the primary cause of cancer-related mortality. Complete surgical resection with curative intent remains the most efficacious treatment modality for improving the survival rate of patients with localized lung cancer. Average life expectancy has increased in many countries, and the number of older patients undergoing surgery has increased.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA.
Background: While patients are assessed for their ability to tolerate surgery through physiologic evaluations such as pulmonary function tests, ventilation-perfusion scans, and exercising testing, some patients still require home oxygen therapy after pulmonary resection. It is not well understood what the associated risk factors are, how long patients need supplemental oxygen, and if this requirement is associated with worse long-term outcomes. Given these knowledge gaps, we sought to conduct a systematic review of pulmonary resections and new postoperative home oxygen requirement.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112-0114, United States.
Silicon (Si) is recognized as a promising anode material for lithium-ion batteries (LIBs). However, the significant volume expansion during lithiation poses a make-or-break challenge for the commercial adoption of silicon as an anode. The solutions to mitigate the challenge often depend on processes that can increase costs for the LIB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!