Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The cubic (Q(II)) phase is a promising sustained-release system. However, its rigid gel-like propensity is highly viscous, which makes it difficult to handle in pharmaceutical applications. To circumvent this problem, a less viscous lamellar (L(α)) phase that could spontaneously transform to Q(II) phase by the introduction of water or biological artificial fluid can be used. However, the kinetics pathway of phase transition, susceptibility to digestive processes and impact of the transition on drug release are not yet well understood.
Method: We investigated various biological artificial fluid-induced L(α) to inverse Q(II) phase transition over time in glyceryl monooleate (GMO) by water penetration scan and light polarizing microscopy. To reveal the structure stability, fluorescence spectroscopy studies were conducted using pyrene as a probe. Furthermore, the release mechanism of pyrene as a lipophilic drug model in the spontaneously formed Q(II) was investigated.
Result: Although hexagonal (H(II)) mesophases occurred when phosphate buffered saline (PBS) 7.4, 0.1 M HCl or sodium taurocholate (NaTC) solutions were introduced to GMO at room temperature, they disappear with the exception of 0.1 M HCl at 37 °C. Compared with 25 °C, L(α) to Q(II) phase transition was in a faster rate as almost completely transforms were observed after 2 h post-immersion. The spontaneously formed mesophases were stable over 24 h immersions in PBS or pancreatic lipase solutions as proven by the extremely low fluorescence signal, however they were digestible by bile salts. This result indicated that digestion by bile salts was the major pathway instead of digestion by lipases. Moreover, pyrene fluorescence spectroscopy confirmed that the digestion by bile salts induced the formation of GMO-bile salt mixed micelles whose performance depended on the bile salt concentrations. This dependence influenced the drug release from the spontaneously formed Q(II) phase.
Conclusion: All the results concluded that temperature, pH and ionic strength tendencies for the formation of non-lamellar structures greatly influenced the self-assembly process, thereby affecting the final mesophase structure. The results of this study are important to understand the lamellar to non-lamellar lipid-phase transitions and their possible pharmaceutical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03639045.2012.752502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!