Aim: To assess the efficacy of 17% ethylene diamine tetra acetic acid and 7% maleic acid in the removal of 3 calcium hydroxide preparations placed as intracanal medicaments.
Materials And Methods: The root canals of 60 single rooted premolars were prepared with a step back technique and randomly assigned into 3 experimental groups (n= 20). Group A was filled with plain calcium hydroxide mixed with distilled water in which barium sulfate was added for radio opacity, Group B was filled with Apexcal and Group C was filled with Metapex. After 7 days each group was divided into 2 sub groups (n= 10). The medicaments were retrieved with 17% EDTA (first sub group) and 7% maleic acid (second sub group). Along with the above irrigants manual and ultrasonic agitation was used. The pre and post removal volume of medicaments in root canals were measured using spiral computerized tomography. The percentage difference was calculated and statistically analyzed using Kruskal Wallis and Mann Whitney U test.
Results: 17% EDTA and 7% maleic acid efficiently removed calcium hydroxide, distilled water mixture (P= 0.218) and Apexcal (P= 0.684), whereas 7% maleic acid showed better retrieval capability of Metapex than 17% EDTA (P= 0.002).
Conclusion: Calcium hydroxide, distilled water mixture and polyethylene glycol based calcium hydroxide were efficiently removed by 17% EDTA and 7% maleic acid. 7% maleic acid removed silicone oil based calcium hydroxide preparation better than 17% EDTA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548348 | PMC |
http://dx.doi.org/10.4103/0972-0707.105300 | DOI Listing |
Mater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFGels
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
Membrane proteins (MPs) are critical to cellular processes and serve as essential therapeutic targets. However, their isolation and characterization are often impeded by traditional detergent-based methods, which can compromise their native states, and retention of their native lipid environment. Amphiphilic polymers have emerged as effective alternatives, enabling the formation of nanoscale discs that preserve MPs' structural and functional integrity.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
It has been demonstrated that chlorine predominately reacts with phenolic compounds through an electrophilic aromatic substitution, yielding chlorinated phenols. Previous studies showed that copper oxide (CuO), a water pipe corrosion product, can catalytically enhance the reactivity of chlorine and its disproportionation. In this study, kinetics and mechanisms for the reactions of chlorine with phenolic compounds in the presence of CuO were investigated.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2024
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. Electronic address:
The acquisition of ferrous iron (Fe) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe acquisition mechanism is the ferrous iron transport (Feo) system. In V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!