We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30-60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in β-cells by exposure to tempol, a superoxide (O2(-)) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2(-) were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1α (HIF1α). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1α stabilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661648 | PMC |
http://dx.doi.org/10.2337/db12-0903 | DOI Listing |
Nutrients
September 2023
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
In order to investigate the chronic effects of basic amino acids (BAA) on β-cell metabolism and insulin secretion, INS-1 β-cells were randomly assigned to cultures in standard medium (Con), standard medium plus 10 mM L-Arginine (Arg), standard medium plus 10 mM L-Histidine (His) or standard medium plus 10 mM L-Lysine (Lys) for 24 h. Results showed that insulin secretion was decreased by the Arg treatment but was increased by the His treatment relative to the Con group ( < 0.05).
View Article and Find Full Text PDFInt J Mol Sci
September 2023
The Arrhenius Laboratories F3, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D).
View Article and Find Full Text PDFJ Cell Sci
April 2023
Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland.
Glucose sensing in pancreatic β-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals.
View Article and Find Full Text PDFDiabetol Int
July 2022
Division of Diabetes and Metabolism, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610 Japan.
Pancreatic β-cells in the islets of Langerhans secrete insulin in response to blood glucose levels. Precise control of the amount of insulin secreted is of critical importance for maintaining systemic carbohydrate homeostasis. It is now well established that glucose induced production of ATP from ADP and the K channel closure elevate cytosolic Ca, triggering insulin exocytosis in β-cells.
View Article and Find Full Text PDFJ Transl Med
April 2022
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
Diabetes mellitus (DM), currently affecting 463 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from the loss or dysfunction of pancreatic β-cells with the former preponderating in type 1 diabetes (T1DM) and the latter in type 2 diabetes (T2DM). Because impaired insulin secretion due to dysfunction or loss of pancreatic β-cells underlies different types of diabetes, research has focused its effort towards the generation of pancreatic β-cells from human pluripotent stem cell (hPSC) as a potential source of cells to compensate for insulin deficiency. However, many protocols developed to differentiate hPSCs into insulin-expressing β-cells in vitro have generated hPSC-derived β-cells with either immature phenotype such as impaired glucose-stimulated insulin secretion (GSIS) or a weaker response to GSIS than cadaveric islets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!