In order to investigate the effect of environmentally determined conditions on the cytotoxicity of anticancer treatments, Hoechst 33342 dye selected tumor subpopulations were separated after in vivo treatment and plated for single cell colony survival. The 10% brightest cells were assayed as putative normally oxygenated cells and the 20% dimmest as putative hypoxic cells. At single therapeutic doses, cyclophosphamide treatment resulted in the largest differential killing between bright and dim cells (6.3-fold bright greater than dim); 1,3-bis(2-chloroethyl)-1-nitrosourea was 3.2-fold more cytotoxic toward bright cells and carboplatin was 2.4-fold more toxic toward bright cells. Both radiation (10 Gy) and melphalan were 2.2-fold more toxic to bright cells, while cis-diamminedichloroplatinum(II) was 1.8-fold, thiotepa was 1.2-fold and procarbazine was 1.3-fold more toxic to bright cells. Actinomycin D was 3.4-fold more toxic to bright cells. Adriamycin was 2.2-fold, vincristine was 2.1-fold, and etoposide was 1.6-fold more toxic to bright cells. Bleomycin and 5-fluorouracil were also tested and were 1.5- and 2.3-fold more toxic to bright cells, respectively. Only four treatments were more toxic to dim cells: mitomycin C (3.5-fold), misonidazole (1.5-fold), etanidazole (3.5-fold), and 43 degrees C, 30 min local hyperthermia (2.6-fold). In an attempt to shift the pattern of dim cell sparing, Fluosol-DA plus carbogen (95% O2/5% CO2) breathing was added to treatment with radiation (10 Gy), melphalan, cis-diamminedichloroplatinum(II), and etoposide. Although each of these treatments became significantly more toxic with the addition of Fluosol-DA/carbogen, only with melphalan did the combination overcome the sparing of dim cells. These results indicate that cells located distally from the tumor vasculature are significantly less affected by most anticancer drugs and suggest that successful therapeutic strategies against solid tumors will involve greater use of the few treatments which are more toxic toward this tumor subpopulation.
Download full-text PDF |
Source |
---|
Plant Mol Biol
January 2025
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
The applicability of a deep learning model for the virtual staining of plant cell structures using bright-field microscopy was investigated. The training dataset consisted of microscopy images of tobacco BY-2 cells with the plasma membrane stained with the fluorescent dye PlasMem Bright Green and the cell nucleus labeled with Histone-red fluorescent protein. The trained models successfully detected the expansion of cell nuclei upon aphidicolin treatment and a decrease in the cell aspect ratio upon propyzamide treatment, demonstrating its utility in cell morphometry.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington. Electronic address:
To further the development of an in vitro model that faithfully recapitulates drug disposition of orally administered drugs, we investigated the utility of human enteroid monolayers to simultaneously assess intestinal drug absorption and first-pass metabolism processes. We cultured human enteroid monolayers from 3 donors, derived via biopsies containing duodenal stem cells that were propagated and then differentiated atop permeable Transwell inserts, and confirmed transformation into a largely enterocyte population via RNA sequencing analysis and immunocytochemistry (ICC) assays. Proper cell morphology was assessed and confirmed via bright field microscopy and ICC imaging of tight junction proteins and other apically and basolaterally localized proteins.
View Article and Find Full Text PDFNat Rev Cancer
January 2025
Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8 T cell immune responses.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, University of California San Diego, La Jolla, CA, USA.
Background: Gastric cancer poses a major diagnostic and therapeutic challenge. Improved visualization of tumor margins and lymph node metastases with tumor-specific fluorescent markers could improve outcomes.
Methods: To establish orthotopic models of gastric cancer, one million cells of the human gastric cancer cell line, MKN45, were suspended in 50 μl of equal parts PBS and Matrigel and injected into the nude mouse stomach with a 29-gauge needle.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!