Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.2474DOI Listing

Publication Analysis

Top Keywords

glutamine supplementation
12
neutrophil function
12
glutamine group
12
ros production
12
glutamine
11
supplementation neutrophil
8
group ingested
8
control group
8
activity serum
8
myogenic enzymes
8

Similar Publications

Background: The wound healing effects of a specialized amino acid supplement containing calcium beta-hydroxy-beta-methylbutyrate, L-arginine, and L-glutamine (HMB/Arg/Gln) have been reported. This study aimed to investigate the effectiveness of HMB/Arg/Gln in the perioperative management of patients with thoracic esophageal cancer.

Methods: This retrospective cohort study included 131 patients who underwent esophagectomy for thoracic esophageal cancer between January 2016 and November 2023.

View Article and Find Full Text PDF

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Unlabelled: Dysfunction in the prefrontal cortex can lead to cognitive inflexibility due to multifactorial causes as included cardiometabolic disorders, stress, inadequate diets, as well as an imbalance of the gut-brain axis microbiota. However, these risk factors have not been evaluated jointly. The purpose of this study was to evaluate the effect of physical stress (MS: Male Stress and FS: Female Stress) and high-fat diet (MD: Male Diet and FD: Female Diet) supplementation on the gut microbiota and cognitive flexibility.

View Article and Find Full Text PDF

Background & Aims: In older patients undergoing cardiac surgery, physical function is a critical determinant of postoperative outcomes. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation has been shown to promote muscle protein anabolism and inhibit catabolism, thereby preventing muscle weakness. However, its efficacy in older patients undergoing cardiac surgery remains unknown.

View Article and Find Full Text PDF

Human primary (hpBMEC) and induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (hiBMEC) are interchangeably used in blood-brain barrier models to study neurological diseases and drug delivery. Both hpBMEC and hiBMEC use glutamine as a source of carbon and nitrogen to produce metabolites and build proteins essential to cell function and communication. We used metabolomic, transcriptomic, and computational methods to examine how hpBMEC and hiBMEC metabolize glutamine, which may impact their utility in modeling the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!