Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis.

Bioresour Technol

Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-Dong, Yuseong-gu, Daejeon, Republic of Korea.

Published: March 2013

The performance of dry anaerobic digestion (AD) of food waste was investigated under mesophilic conditions and the methanogenic community was investigated using 454 pyrosequencing. Stable dry AD was achieved by hydraulic retention time (HRT) control without the addition of alkali agents. The average CH4 production rate, CH4 content, and volatile solid reduction rate were 2.51±0.17m(3)/m(3)/d, 66±2.1%, and 65.8±1.22%, respectively, at an HRT of 40d. The methanogenic community of the seed sludge experienced a significant reduction in genus diversity from 18 to 4 and a dominant methanogenic shift from hydrogenotrophic to acetoclastic groups after the acclimation under dry condition. Almost all sequences of the dry anaerobic digester were closely related with those of Methanosarcina thermophila with similarity of 96.4-99.1%. The experimental results would serve as useful information to understand the dry AD system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.12.100DOI Listing

Publication Analysis

Top Keywords

dry anaerobic
12
methanogenic community
12
anaerobic digestion
8
digestion food
8
food waste
8
mesophilic conditions
8
dry
6
waste mesophilic
4
conditions performance
4
methanogenic
4

Similar Publications

Efficiency and process development for microbial biomass production using oxic bioelectrosynthesis.

Trends Biotechnol

December 2024

Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstraße 12 (F), 21073 Hamburg, Germany. Electronic address:

Autotrophic microbial electrosynthesis (MES) processes are mainly based on organisms that rely on carbon dioxide (CO) as an electron acceptor and typically have low biomass yields. However, there are few data on the process and efficiencies of oxic MES (OMES). In this study, we used the knallgas bacterium Kyrpidia spormannii to investigate biomass formation and energy efficiency of cathode-dependent growth.

View Article and Find Full Text PDF

Hydrogen (H) energy has garnered significant attention due to its numerous advantages. Nonetheless, for future commercialization, it is imperative to screen and identify strains with enhanced H-producing capacities. In order to attain a high and consistent production performance, the conversion of biomass sources into H requires careful selection of the most appropriate H-producing bacteria.

View Article and Find Full Text PDF

Seasonal water level fluctuations in rivers significantly influenced the cross-media migration, transformation, and risk diffusion of antibiotics from the vadose zone into groundwater. This study developed a coupled model integrating machine learning (ML) with HYDRUS-3D and GMS to accurately predict sulfamethazine migration under dynamic water levels. The predictive accuracy (E≥0.

View Article and Find Full Text PDF
Article Synopsis
  • Oxygen supply is a challenge in aerobic high cell density culturing of bacteria, but denitrification with nitrogen oxides offers a promising alternative due to higher solubility of NO in water and harmless end products.
  • The novel pH-stat approach using HNO helps regulate pH and sustain NO concentration during the process, allowing for successful high-density growth of the model strain Paracoccus denitrificans using glucose and NO.
  • Despite achieving a dry weight of 20 g/L, slower growth rates were observed, attributed to CO/HCO buildup that suppressed pH and affected NO feeding, while unbalanced electron flow could lead to toxic intermediate concentrations.
View Article and Find Full Text PDF

Background of persistent organic pollutants in estuarine sediments from the Marajó Island, an Amazonian environmental protection area for sustainable use.

Environ Sci Pollut Res Int

December 2024

Laboratório de Química Orgânica Marinha, Departamento de Oceanografia Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP, CEP, 05508-120, Brasil.

Marajó Island, an environmental protection area for sustainable use in the Brazilian Amazon, was the first region in Brazil to apply the pesticide DDT, a persistent organic pollutant (POP), to control malaria outbreaks. This study investigated background levels of various POPs, including o,p'- and p,p'-DDT and their primary metabolites (o,p'- and p,p'-DDE, o,p'- and p,p'-DDD), as well as hexachlorocyclohexane (α-, β-, γ-, δ-HCH), using estuarine surface sediments and sediment cores from areas influenced by urbanization and agriculture. All samples were collected during the dry season (September 2014).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!