Cyclosporine A (CsA) nephrotoxicity has been linked to reactive oxygen species (ROS) production in renal cells. We have demonstrated that the antioxidant Vitamin E (Vit E) abolished renal toxicity in vivo and in vitro models. As one of the main sources of intracellular ROS are mitochondria, we studied the effects of CsA on several mitochondrial functions in LLC-PK1 cells. CsA induced ROS synthesis and decreased reduced glutathione (GSH). The drug decreased mitochondrial membrane potential (ΔΨm) and induced physiological modifications in both the inner (IMM) and the outer mitochondrial membranes (OMM). In the IMM, CsA provoked mitochondrial permeability transition pores (MPTP) and cytochrome c was liberated into the intermembrane space. CsA also induced pore formation in the OMM, allowing that intermembrane space contents can reach cytosol. Furthermore, CsA altered the mitochondrial dynamics, inducing an increase in mitochondrial fission; CsA increased the expression of dynamin related protein 1 (Drp1) that contributes to mitochondrial fission, and decreased the expression of mitofusin 2 (Mfn2) and optic atrophy protein 1 (Opa1), proteins involved in the fusion process. All these phenomena were related to apoptosis. These effects were inhibited when cells were treated with the antioxidant Vit E suggesting that they were mediated by the synthesis of ROS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2013.01.007 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.
View Article and Find Full Text PDFLife (Basel)
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
The Ohrid trout, , is an endemic species of Lake Ohrid, one of Europe's oldest lakes, located on the Albania-North Macedonia border. This species exhibits distinct morphotypes-, , , and -that differ in morphology and spawning behaviour. However, the extent of their genetic differentiation remains unclear.
View Article and Find Full Text PDFInsects
December 2024
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of .
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China.
Spawn aging poses a substantial challenge to the industry. This study focuses on the role of mitochondrial dysfunction in the aging process of spawn. We conducted a comprehensive comparative transcriptome analysis to elucidate the molecular mechanisms underlying spawn aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!