The effect of counterions was investigated to probe the principal ionic effects on the solubility in water and melting behavior of cationic gemini surfactants. We focused on two types of counterions: (1) small inorganic counterions that are typically taken from the Hofmeister series were studied to focus on the effect of ion type and (2) n-alkylcarboxylate counterions were studied to focus on the effect of the hydrophobicity of counterions. The Krafft temperature (Tk) and melting temperature (Tm) were obtained by conductivity measurements, calorimetric measurements, and optical microscopy observation. The results clearly indicate that Tk, which represents the solubility of surfactants, is not determined by a single parameter of ions such as the hydration free energy, as is too often assumed, but rather by the combined effects between the hydrophobicity of anions associated with other effects such as the polarizability, dehydrated ion size, and ionic morphology. In parallel, our observation demonstrated that all of the surfactants showed a transition from a crystalline phase to a thermotropic liquid-crystalline phase at around ca. 70 °C, which transformed to an isotropic liquid phase at around ca. 150 °C, and that the transition temperatures depended strongly on the counterion type. The counterion effects on the solubilization and melting behaviors were then compared with micellization properties that have been reported previously. These results provide new insight into understanding the effect of ions on the delicate balance of forces controlling the solution properties and aggregate morphology of charged amphiphilic molecules. Specifically, the solubilization properties of these cationic surfactants with various counterions were determined mainly by the subtle interplay between the hydration of counterions and the dissociation energies (stability of crystallinity) of the ion pair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la304341x | DOI Listing |
J Am Chem Soc
January 2025
Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.
The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.
View Article and Find Full Text PDFJ Ion Liq
December 2024
Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, United States.
Dicationic ionic liquids (DILs) are emerging as a powerful, next-generation approach to designing applied ILs because of their superior physicochemical properties as well as their diverse complexity and tunability for task specific applications. DILs are scarce in the literature compared to monocationic ILs (MILs), and one of their main issues is their expected tendency to possess higher melting temperatures. A series of 1,4-bis[2-(4-pyridyl)ethenyl] benzene and 1,4-bis[2-(2-pyridyl)ethenyl]benzene quaternary salts (Q-BPEBs) with different counterions (bromide, tosylate, and triflimide) and carbon chain lengths (C, C, and C) have been synthesized for their potential as DILs with strong photoluminescent properties in the solid state.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:
This study presents a novel method for encapsulating the bioactive peptide teduglutide to enhance its oral bioavailability using O/W nanoemulsion (NE). Recombinant teduglutide (rTGT), produced in E. coli with 93 % purity, was hydrophobically modified through ion-pairing with phytic acid (PA) and sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDFEnviron Int
January 2025
Département de Chimie, Université de Montréal, Montreal, QC, Canada. Electronic address:
This study investigated the occurrence of perfluoroalkyl and polyfluoroalkyl substances (PFAS), including anionic, cationic, and zwitterionic compounds, in drinking water. Between 2021-2023, an expanded list of 76 target PFAS was screened in tap water samples mainly from Canada, but also including tap water samples from the Eastern United States, Mexico, South America (Argentina), the Caribbean (Dominican Republic, Cuba), Africa (Algeria, Cameroon, Central African Republic, Morocco, Rwanda, Tunisia), Europe (France, Greece, Italy, Spain, and the United Kingdom) and Asia (Japan, Vietnam, Iran, and Türkiye). An additional ∼ 200 suspect-target PFAS were screened using high-resolution Orbitrap mass spectrometry.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!