Purpose: A study was conducted to determine the dosimetric effects resulting from air pockets and high atomic number (Z) contrast medium within a multichannel breast brachytherapy device.
Material And Methods: A 5-6 cm diameter Contura (SenoRx) brachytherapy device was inflated using 37 cm(3) of saline. Baseline dose falloff from an HDR Iridium-192 source was measured with the Iridium source centered in the central channel and an anterior off-center channel. Data were collected at distances from 1 to 50 mm. Comparison studies were conducted with identically inflated volume containing varied air pocket volumes (1-4 cm(3)) and concentrations of contrast solution (3%, 6%, and 9% by volume). Dose perturbation factors (DPF) were computed and evaluated.
Results: Dose perturbations due to air pockets and contrast solutions were observed. As the volume of air increased, the DPF increased by approximately 2.25%/cm(3). The effect was consistent for both channels. The contrast effects were more complex. The 3% contrast media had minimal dose perturbation. The 6% contrast solution caused dose reduction of 1.0% from the central channel but 1.5% dose increase from the anterior channel. The 9% contrast solution caused dose reductions by 4.0% (from central channel) and 3.0% (from anterior channel). The DPF from all contrast solutions moderated with increasing distance.
Conclusions: Dose perturbations due to air pockets and high-Z contrast solution can be significant. It is important to control these effects to avoid dose errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551364 | PMC |
http://dx.doi.org/10.5114/jcb.2011.26473 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFOcul Surf
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:
Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.
Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.
Sensors (Basel)
January 2025
School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK.
Elephant sound identification is crucial in wildlife conservation and ecological research. The identification of elephant vocalizations provides insights into the behavior, social dynamics, and emotional expressions, leading to elephant conservation. This study addresses elephant sound classification utilizing raw audio processing.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Optometry and Vision Science, Hadassah Academic College, Jerusalem 9101001, Israel.
Keratoconus is a progressive corneal disorder that can lead to irreversible visual impairment if not detected early. Despite its high prevalence, early diagnosis is often delayed, especially in low-to-middle-income countries due to limited awareness and restricted access to advanced diagnostic tools such as corneal topography, tomography, optical coherence tomography, and corneal biomechanical assessments. These technologies are essential for identifying early-stage keratoconus, yet their high cost limits accessibility in resource-limited settings.
View Article and Find Full Text PDFMolecules
January 2025
Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.
Graphitic carbon nitride (g-CN) proved to be a promising semiconductor for the photocatalytic degradation of various organic pollutants. However, its efficacy is limited by a fast electron hole recombination, a restricted quantity of active sites, and a modest absorption in the visible range. To overcome these limitations, g-CN-BiS and g-CN-ZnS composites were effectively produced utilizing a starch-assisted technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!