In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551257 | PMC |
http://dx.doi.org/10.3389/fphar.2012.00204 | DOI Listing |
Sensors (Basel)
January 2025
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China.
Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Engineering Training Center, Nantong University, Nantong 226019, China.
The issue of obstacle avoidance and safety for visually impaired individuals has been a major topic of research. However, complex street environments still pose significant challenges for blind obstacle detection systems. Existing solutions often fail to provide real-time, accurate obstacle avoidance decisions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Spectrum sensing is recognized as a viable strategy to alleviate the scarcity of spectrum resources and to optimize their usage. In this paper, considering the time-varying characteristics and the dependence on various timescales within a time series of samples composed of in-phase (I) and quadrature (Q) component signals, we propose a multi-scale time-correlated perceptual attention model named MSTC-PANet. The model consists of multiple parallel temporal correlation perceptual attention (TCPA) modules, enabling us to extract features at different timescales and identify dependencies among features across various timescales.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China.
Pedestrian detection is widely used in real-time surveillance, urban traffic, and other fields. As a crucial direction in pedestrian detection, dense pedestrian detection still faces many unresolved challenges. Existing methods suffer from low detection accuracy, high miss rates, large model parameters, and poor robustness.
View Article and Find Full Text PDFJ Clin Med
January 2025
Centre of Excellence for Sustainable Living and Working (SustAInLivWork), 51423 Kaunas, Lithuania.
: This study focuses on the critical task of blood vessel segmentation in medical image analysis, essential for diagnosing cardiovascular diseases and enabling effective treatment planning. Although deep learning architectures often produce very high segmentation results in medical images, coronary computed tomography angiography (CTA) images are more challenging than invasive coronary angiography (ICA) images due to noise and the complexity of vessel structures. : Classical architectures for medical images, such as U-Net, achieve only moderate accuracy, with an average Dice score of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!