Dielectric properties of yeast cells expressed with the motor protein prestin.

J Biol Phys

Department of Physics and Texas Center for Superconductivity & Advanced Materials, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5005 U.S.A.

Published: December 2005

We report on the linear and nonlinear dielectric properties of budding yeast (S. cerevisiae) cells, one strain of which has been genetically modified to express prestin. This motor protein plays a crucial role in the large electromotility exhibited by the outer hair cells of mammalian inner ears. Live cell suspensions exhibit enormous dielectric responses, which can be used to probe metabolic activity, membrane potential, and other properties. The aims of this study are: (1) to compare the dielectric responses of organisms expressing prestin from those of control specimens, and (2) ultimately to further develop dielectric response as a tool to study live cells, proteins, and lipids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3456335PMC
http://dx.doi.org/10.1007/s10867-005-6064-6DOI Listing

Publication Analysis

Top Keywords

dielectric properties
8
motor protein
8
dielectric responses
8
dielectric
5
properties yeast
4
cells
4
yeast cells
4
cells expressed
4
expressed motor
4
protein prestin
4

Similar Publications

Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field.

J Phys Chem Lett

January 2025

University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

An improvement in the computational efficiency of polarizable force field simulations is made through the development of a polarizable Drude water model, SWM3, in combination with the use of Lennard-Jones Particle Mesh Ewald (LJPME) for the treatment of long-range LJ interactions. The experimental bulk properties, density, heat of vaporization, dielectric constant, and self-diffusion constant of the SWM3 model are accurately replicated at ambient condition. The temperature dependence of the bulk properties is also captured except for the density.

View Article and Find Full Text PDF

Gaseous Synergistic Self-Assembly and Arraying to Develop Bio-Organic Photocapacitors for Neural Photostimulation.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.

Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.

View Article and Find Full Text PDF

High-entropy engineered BaTiO-based ceramic capacitors with greatly enhanced high-temperature energy storage performance.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Ceramic capacitors with ultrahigh power density are crucial in modern electrical applications, especially under high-temperature conditions. However, the relatively low energy density limits their application scope and hinders device miniaturization and integration. In this work, we present a high-entropy BaTiO-based relaxor ceramic with outstanding energy storage properties, achieving a substantial recoverable energy density of 10.

View Article and Find Full Text PDF

A multi-band high-sensitivity microwave sensor for simultaneous detection of two dielectric materials.

Rev Sci Instrum

January 2025

The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System, Luoyang 471004, China.

A multi-band high-sensitivity microwave sensor is reported. The two resonance units are based on complementary square spiral resonators (CSSRs) and produce four measurement bands through parasitic resonances. The four frequency bands are 2.

View Article and Find Full Text PDF

Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!