Development of therapy against infections caused by antibiotic-resistant pathogens is a major unmet need in contemporary medicine. In previous work, our group chemically modified an antimicrobial peptidomimetic motif for targeted applications against cancer and obesity. Here, we show that the modified motif per se is resistant to proteolytic degradation and is a candidate antiinfective agent. We also show that the susceptibility of microorganisms to the drug is independent of bacterial growth phase. Moreover, this peptidomimetic selectively interferes with the integrity and function of the microbial surface lipid bilayer, data indicative that bacterial death results from membrane disruption followed by dissipation of membrane potential. Finally, we demonstrate two potential translational applications: use against biofilms and synergy with antibiotics in use. In summary, we introduce the mechanism of action and the initial evaluation of a prototype drug and a platform for the development of D-enantiomer antimicrobial peptidomimetics that target bacterial membranes of certain gram-negative problem pathogens with promising translational applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587187PMC
http://dx.doi.org/10.1073/pnas.1221924110DOI Listing

Publication Analysis

Top Keywords

mechanism action
8
action initial
8
initial evaluation
8
antimicrobial peptidomimetic
8
translational applications
8
evaluation membrane
4
membrane active
4
active all-d-enantiomer
4
all-d-enantiomer antimicrobial
4
peptidomimetic development
4

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!