Rai, a Shc adapter family member, acts as a negative regulator of antigen receptor signaling in T and B cells. Rai(-/-) mice develop lupus-like autoimmunity associated to the spontaneous activation of self-reactive lymphocytes. Here, we have addressed the potential role of Rai in the development of the proinflammatory Th1 and Th17 subsets, which are centrally implicated in the pathogenesis of a number of autoimmune diseases, including lupus. We show that Rai(-/-) mice display a spontaneous Th1/Th17 bias. In vitro polarization experiments on naive and effector/memory CD4(+) T cells demonstrate that Rai(-/-) favors the development and expansion of Th17 but not Th1 cells, indicating that Rai modulates TCR signaling to antagonize the pathways driving naive CD4(+) T cell differentiation to the Th17 lineage, while indirectly limiting Th1 cell development in vivo. Th1 and Th17 cell infiltrates were found in the kidneys of Rai(-/-) mice, providing evidence that Rai(-/-) contributes to the development of lupus nephritis, not only by enhancing lymphocyte activation but also by promoting the development and expansion of proinflammatory effector T cells. Interestingly, T cells from SLE patients were found to have a defect in Rai expression, suggesting a role for Rai in disease pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0712331 | DOI Listing |
Angiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFCardiovasc Diabetol
December 2024
Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
Background: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses.
Methods: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days.
Results: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life.
Drug Dev Ind Pharm
January 2025
Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India.
Objective: Genotoxicity assays include micronucleus test, comet assay, and malformed sperm head used to investigate the protective potential of quercetin (Que) and Que nanoparticles against imidacloprid (IMI)-induced genotoxicity in Swiss albino mice.
Methods: The ionic gelation procedure was used to synthesize the Que nanoparticles and characterized for their hydrodynamic diameter, zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, and encapsulation efficiency. A total of 48 mice were taken in eight groups with six animals in each group.
Mol Cell Endocrinol
February 2025
Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
Excessive consumption of saturated fatty acids creates a debilitating cellular environment that hinders the normal function and survival of osteoblasts, contributing to bone metabolic disorders such as osteoporosis. The FDA-approved polypeptide PTH 1-34 is a well-established therapy for post-menopausal osteoporosis, yet its protective effects in a palmitic acid (PA)-rich hyperlipidemic environment are not well understood. This study investigates the impact of PTH 1-34 on PA-induced cellular responses in osteoblasts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Division of Cancer Biology, Council of Scientific & Industrial Research-Central Drug Research Institute, Lucknow 226031, India.
Triple-negative breast cancer (TNBC) has profound unmet medical need globally for its devastating clinical outcome associated with rapid metastasis and lack of targeted therapies. Recently, lipid metabolic reprogramming especially fatty acid oxidation (FAO) has emerged as a major driver of breast cancer metastasis. Analyzing the expression of major FAO regulatory genes in breast cancer, we found selective overexpression of acyl-CoA synthetase 4 (ACSL4) in TNBC, which is primarily attributed to the absence of progesterone receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!